Author: Kanishka Perera
Publisher: American Mathematical Soc.
ISBN: 0821849689
Category : Mathematics
Languages : en
Pages : 170
Book Description
Presents a Morse theoretic study of a very general class of homogeneous operators that includes the $p$-Laplacian as a special case. The $p$-Laplacian operator is a quasilinear differential operator that arises in many applications such as non-Newtonian fluid flows. Working with a new sequence of eigenvalues that uses the cohomological index, the authors systematically develop alternative tools such as nonlinear linking and local splitting theories in order to effectively apply Morse theory to quasilinear problems.
Morse Theoretic Aspects of $p$-Laplacian Type Operators
Author: Kanishka Perera
Publisher: American Mathematical Soc.
ISBN: 0821849689
Category : Mathematics
Languages : en
Pages : 170
Book Description
Presents a Morse theoretic study of a very general class of homogeneous operators that includes the $p$-Laplacian as a special case. The $p$-Laplacian operator is a quasilinear differential operator that arises in many applications such as non-Newtonian fluid flows. Working with a new sequence of eigenvalues that uses the cohomological index, the authors systematically develop alternative tools such as nonlinear linking and local splitting theories in order to effectively apply Morse theory to quasilinear problems.
Publisher: American Mathematical Soc.
ISBN: 0821849689
Category : Mathematics
Languages : en
Pages : 170
Book Description
Presents a Morse theoretic study of a very general class of homogeneous operators that includes the $p$-Laplacian as a special case. The $p$-Laplacian operator is a quasilinear differential operator that arises in many applications such as non-Newtonian fluid flows. Working with a new sequence of eigenvalues that uses the cohomological index, the authors systematically develop alternative tools such as nonlinear linking and local splitting theories in order to effectively apply Morse theory to quasilinear problems.
Nonlinear Analysis, Differential Equations, and Applications
Author: Themistocles M. Rassias
Publisher: Springer Nature
ISBN: 3030725634
Category : Mathematics
Languages : en
Pages : 791
Book Description
This contributed volume showcases research and survey papers devoted to a broad range of topics on functional equations, ordinary differential equations, partial differential equations, stochastic differential equations, optimization theory, network games, generalized Nash equilibria, critical point theory, calculus of variations, nonlinear functional analysis, convex analysis, variational inequalities, topology, global differential geometry, curvature flows, perturbation theory, numerical analysis, mathematical finance and a variety of applications in interdisciplinary topics. Chapters in this volume investigate compound superquadratic functions, the Hyers–Ulam Stability of functional equations, edge degenerate pseudo-hyperbolic equations, Kirchhoff wave equation, BMO norms of operators on differential forms, equilibrium points of the perturbed R3BP, complex zeros of solutions to second order differential equations, a higher-order Ginzburg–Landau-type equation, multi-symplectic numerical schemes for differential equations, the Erdős-Rényi network model, strongly m-convex functions, higher order strongly generalized convex functions, factorization and solution of second order differential equations, generalized topologically open sets in relator spaces, graphical mean curvature flow, critical point theory in infinite dimensional spaces using the Leray-Schauder index, non-radial solutions of a supercritical equation in expanding domains, the semi-discrete method for the approximation of the solution of stochastic differential equations, homotopic metric-interval L-contractions in gauge spaces, Rhoades contractions theory, network centrality measures, the Radon transform in three space dimensions via plane integration and applications in positron emission tomography boundary perturbations on medical monitoring and imaging techniques, the KdV-B equation and biomedical applications.
Publisher: Springer Nature
ISBN: 3030725634
Category : Mathematics
Languages : en
Pages : 791
Book Description
This contributed volume showcases research and survey papers devoted to a broad range of topics on functional equations, ordinary differential equations, partial differential equations, stochastic differential equations, optimization theory, network games, generalized Nash equilibria, critical point theory, calculus of variations, nonlinear functional analysis, convex analysis, variational inequalities, topology, global differential geometry, curvature flows, perturbation theory, numerical analysis, mathematical finance and a variety of applications in interdisciplinary topics. Chapters in this volume investigate compound superquadratic functions, the Hyers–Ulam Stability of functional equations, edge degenerate pseudo-hyperbolic equations, Kirchhoff wave equation, BMO norms of operators on differential forms, equilibrium points of the perturbed R3BP, complex zeros of solutions to second order differential equations, a higher-order Ginzburg–Landau-type equation, multi-symplectic numerical schemes for differential equations, the Erdős-Rényi network model, strongly m-convex functions, higher order strongly generalized convex functions, factorization and solution of second order differential equations, generalized topologically open sets in relator spaces, graphical mean curvature flow, critical point theory in infinite dimensional spaces using the Leray-Schauder index, non-radial solutions of a supercritical equation in expanding domains, the semi-discrete method for the approximation of the solution of stochastic differential equations, homotopic metric-interval L-contractions in gauge spaces, Rhoades contractions theory, network centrality measures, the Radon transform in three space dimensions via plane integration and applications in positron emission tomography boundary perturbations on medical monitoring and imaging techniques, the KdV-B equation and biomedical applications.
Analysis and Topology in Nonlinear Differential Equations
Author: Djairo G de Figueiredo
Publisher: Springer
ISBN: 3319042149
Category : Mathematics
Languages : en
Pages : 465
Book Description
This volume is a collection of articles presented at the Workshop for Nonlinear Analysis held in João Pessoa, Brazil, in September 2012. The influence of Bernhard Ruf, to whom this volume is dedicated on the occasion of his 60th birthday, is perceptible throughout the collection by the choice of themes and techniques. The many contributors consider modern topics in the calculus of variations, topological methods and regularity analysis, together with novel applications of partial differential equations. In keeping with the tradition of the workshop, emphasis is given to elliptic operators inserted in different contexts, both theoretical and applied. Topics include semi-linear and fully nonlinear equations and systems with different nonlinearities, at sub- and supercritical exponents, with spectral interactions of Ambrosetti-Prodi type. Also treated are analytic aspects as well as applications such as diffusion problems in mathematical genetics and finance and evolution equations related to electromechanical devices.
Publisher: Springer
ISBN: 3319042149
Category : Mathematics
Languages : en
Pages : 465
Book Description
This volume is a collection of articles presented at the Workshop for Nonlinear Analysis held in João Pessoa, Brazil, in September 2012. The influence of Bernhard Ruf, to whom this volume is dedicated on the occasion of his 60th birthday, is perceptible throughout the collection by the choice of themes and techniques. The many contributors consider modern topics in the calculus of variations, topological methods and regularity analysis, together with novel applications of partial differential equations. In keeping with the tradition of the workshop, emphasis is given to elliptic operators inserted in different contexts, both theoretical and applied. Topics include semi-linear and fully nonlinear equations and systems with different nonlinearities, at sub- and supercritical exponents, with spectral interactions of Ambrosetti-Prodi type. Also treated are analytic aspects as well as applications such as diffusion problems in mathematical genetics and finance and evolution equations related to electromechanical devices.
Index theory in nonlinear analysis
Author: Chungen Liu
Publisher: Springer
ISBN: 981137287X
Category : Mathematics
Languages : en
Pages : 346
Book Description
This book provides detailed information on index theories and their applications, especially Maslov-type index theories and their iteration theories for non-periodic solutions of Hamiltonian systems. It focuses on two index theories: L-index theory (index theory for Lagrangian boundary conditions) and P-index theory (index theory for P-boundary conditions). In addition, the book introduces readers to recent advances in the study of index theories for symmetric periodic solutions of nonlinear Hamiltonian systems, and for selected boundary value problems involving partial differential equations.
Publisher: Springer
ISBN: 981137287X
Category : Mathematics
Languages : en
Pages : 346
Book Description
This book provides detailed information on index theories and their applications, especially Maslov-type index theories and their iteration theories for non-periodic solutions of Hamiltonian systems. It focuses on two index theories: L-index theory (index theory for Lagrangian boundary conditions) and P-index theory (index theory for P-boundary conditions). In addition, the book introduces readers to recent advances in the study of index theories for symmetric periodic solutions of nonlinear Hamiltonian systems, and for selected boundary value problems involving partial differential equations.
Nonlinear Differential Problems with Smooth and Nonsmooth Constraints
Author: Dumitru Motreanu
Publisher: Academic Press
ISBN: 0128133937
Category : Mathematics
Languages : en
Pages : 364
Book Description
Nonlinear Differential Problems with Smooth and Nonsmooth Constraints systematically evaluates how to solve boundary value problems with smooth and nonsmooth constraints. Primarily covering nonlinear elliptic eigenvalue problems and quasilinear elliptic problems using techniques amalgamated from a range of sophisticated nonlinear analysis domains, the work is suitable for PhD and other early career researchers seeking solutions to nonlinear differential equations. Although an advanced work, the book is self-contained, requiring only graduate-level knowledge of functional analysis and topology. Whenever suitable, open problems are stated and partial solutions proposed. The work is accompanied by end-of-chapter problems and carefully curated references. - Builds from functional analysis and operator theory, to nonlinear elliptic systems and control problems - Outlines the evolution of the main ideas of nonlinear analysis and their roots in classical mathematics - Presented with numerous end-of-chapter exercises and sophisticated open problems - Illustrated with pertinent industrial and engineering numerical examples and applications - Accompanied by hundreds of curated references, saving readers hours of research in conducting literature analysis
Publisher: Academic Press
ISBN: 0128133937
Category : Mathematics
Languages : en
Pages : 364
Book Description
Nonlinear Differential Problems with Smooth and Nonsmooth Constraints systematically evaluates how to solve boundary value problems with smooth and nonsmooth constraints. Primarily covering nonlinear elliptic eigenvalue problems and quasilinear elliptic problems using techniques amalgamated from a range of sophisticated nonlinear analysis domains, the work is suitable for PhD and other early career researchers seeking solutions to nonlinear differential equations. Although an advanced work, the book is self-contained, requiring only graduate-level knowledge of functional analysis and topology. Whenever suitable, open problems are stated and partial solutions proposed. The work is accompanied by end-of-chapter problems and carefully curated references. - Builds from functional analysis and operator theory, to nonlinear elliptic systems and control problems - Outlines the evolution of the main ideas of nonlinear analysis and their roots in classical mathematics - Presented with numerous end-of-chapter exercises and sophisticated open problems - Illustrated with pertinent industrial and engineering numerical examples and applications - Accompanied by hundreds of curated references, saving readers hours of research in conducting literature analysis
The Ricci Flow: Techniques and Applications
Author: Bennett Chow
Publisher: American Mathematical Soc.
ISBN: 0821846612
Category : Mathematics
Languages : en
Pages : 542
Book Description
The Ricci flow uses methods from analysis to study the geometry and topology of manifolds. With the third part of their volume on techniques and applications of the theory, the authors give a presentation of Hamilton's Ricci flow for graduate students and mathematicians interested in working in the subject, with an emphasis on the geometric and analytic aspects. The topics include Perelman's entropy functional, point picking methods, aspects of Perelman's theory of $\kappa$-solutions including the $\kappa$-gap theorem, compactness theorem and derivative estimates, Perelman's pseudolocality theorem, and aspects of the heat equation with respect to static and evolving metrics related to Ricci flow. In the appendices, we review metric and Riemannian geometry including the space of points at infinity and Sharafutdinov retraction for complete noncompact manifolds with nonnegative sectional curvature. As in the previous volumes, the authors have endeavored, as much as possible, to make the chapters independent of each other. The book makes advanced material accessible to graduate students and nonexperts. It includes a rigorous introduction to some of Perelman's work and explains some technical aspects of Ricci flow useful for singularity analysis. The authors give the appropriate references so that the reader may further pursue the statements and proofs of the various results.
Publisher: American Mathematical Soc.
ISBN: 0821846612
Category : Mathematics
Languages : en
Pages : 542
Book Description
The Ricci flow uses methods from analysis to study the geometry and topology of manifolds. With the third part of their volume on techniques and applications of the theory, the authors give a presentation of Hamilton's Ricci flow for graduate students and mathematicians interested in working in the subject, with an emphasis on the geometric and analytic aspects. The topics include Perelman's entropy functional, point picking methods, aspects of Perelman's theory of $\kappa$-solutions including the $\kappa$-gap theorem, compactness theorem and derivative estimates, Perelman's pseudolocality theorem, and aspects of the heat equation with respect to static and evolving metrics related to Ricci flow. In the appendices, we review metric and Riemannian geometry including the space of points at infinity and Sharafutdinov retraction for complete noncompact manifolds with nonnegative sectional curvature. As in the previous volumes, the authors have endeavored, as much as possible, to make the chapters independent of each other. The book makes advanced material accessible to graduate students and nonexperts. It includes a rigorous introduction to some of Perelman's work and explains some technical aspects of Ricci flow useful for singularity analysis. The authors give the appropriate references so that the reader may further pursue the statements and proofs of the various results.
Quadrature Theory
Author: Helmut Brass
Publisher: American Mathematical Soc.
ISBN: 0821853619
Category : Mathematics
Languages : en
Pages : 376
Book Description
Every book on numerical analysis covers methods for the approximate calculation of definite integrals. The authors of this book provide a complementary treatment of the topic by presenting a coherent theory of quadrature methods that encompasses many deep and elegant results as well as a large number of interesting (solved and open) problems. The inclusion of the word ``theory'' in the title highlights the authors' emphasis on analytical questions, such as the existence and structure of quadrature methods and selection criteria based on strict error bounds for quadrature rules. Systematic analyses of this kind rely on certain properties of the integrand, called ``co-observations,'' which form the central organizing principle for the authors' theory, and distinguish their book from other texts on numerical integration. A wide variety of co-observations are examined, as a detailed understanding of these is useful for solving problems in practical contexts. While quadrature theory is often viewed as a branch of numerical analysis, its influence extends much further. It has been the starting point of many far-reaching generalizations in various directions, as well as a testing ground for new ideas and concepts. The material in this book should be accessible to anyone who has taken the standard undergraduate courses in linear algebra, advanced calculus, and real analysis.
Publisher: American Mathematical Soc.
ISBN: 0821853619
Category : Mathematics
Languages : en
Pages : 376
Book Description
Every book on numerical analysis covers methods for the approximate calculation of definite integrals. The authors of this book provide a complementary treatment of the topic by presenting a coherent theory of quadrature methods that encompasses many deep and elegant results as well as a large number of interesting (solved and open) problems. The inclusion of the word ``theory'' in the title highlights the authors' emphasis on analytical questions, such as the existence and structure of quadrature methods and selection criteria based on strict error bounds for quadrature rules. Systematic analyses of this kind rely on certain properties of the integrand, called ``co-observations,'' which form the central organizing principle for the authors' theory, and distinguish their book from other texts on numerical integration. A wide variety of co-observations are examined, as a detailed understanding of these is useful for solving problems in practical contexts. While quadrature theory is often viewed as a branch of numerical analysis, its influence extends much further. It has been the starting point of many far-reaching generalizations in various directions, as well as a testing ground for new ideas and concepts. The material in this book should be accessible to anyone who has taken the standard undergraduate courses in linear algebra, advanced calculus, and real analysis.
Connective Real $K$-Theory of Finite Groups
Author: Robert Ray Bruner
Publisher: American Mathematical Soc.
ISBN: 0821851896
Category : Mathematics
Languages : en
Pages : 328
Book Description
Focusing on the study of real connective $K$-theory including $ko^*(BG)$ as a ring and $ko_*(BG)$ as a module over it, the authors define equivariant versions of connective $KO$-theory and connective $K$-theory with reality, in the sense of Atiyah, which give well-behaved, Noetherian, uncompleted versions of the theory.
Publisher: American Mathematical Soc.
ISBN: 0821851896
Category : Mathematics
Languages : en
Pages : 328
Book Description
Focusing on the study of real connective $K$-theory including $ko^*(BG)$ as a ring and $ko_*(BG)$ as a module over it, the authors define equivariant versions of connective $KO$-theory and connective $K$-theory with reality, in the sense of Atiyah, which give well-behaved, Noetherian, uncompleted versions of the theory.
Algebraic Design Theory
Author: Warwick De Launey
Publisher: American Mathematical Soc.
ISBN: 0821844962
Category : Mathematics
Languages : en
Pages : 314
Book Description
Combinatorial design theory is a source of simply stated, concrete, yet difficult discrete problems, with the Hadamard conjecture being a prime example. It has become clear that many of these problems are essentially algebraic in nature. This book provides a unified vision of the algebraic themes which have developed so far in design theory. These include the applications in design theory of matrix algebra, the automorphism group and its regular subgroups, the composition of smaller designs to make larger designs, and the connection between designs with regular group actions and solutions to group ring equations. Everything is explained at an elementary level in terms of orthogonality sets and pairwise combinatorial designs--new and simple combinatorial notions which cover many of the commonly studied designs. Particular attention is paid to how the main themes apply in the important new context of cocyclic development. Indeed, this book contains a comprehensive account of cocyclic Hadamard matrices. The book was written to inspire researchers, ranging from the expert to the beginning student, in algebra or design theory, to investigate the fundamental algebraic problems posed by combinatorial design theory.
Publisher: American Mathematical Soc.
ISBN: 0821844962
Category : Mathematics
Languages : en
Pages : 314
Book Description
Combinatorial design theory is a source of simply stated, concrete, yet difficult discrete problems, with the Hadamard conjecture being a prime example. It has become clear that many of these problems are essentially algebraic in nature. This book provides a unified vision of the algebraic themes which have developed so far in design theory. These include the applications in design theory of matrix algebra, the automorphism group and its regular subgroups, the composition of smaller designs to make larger designs, and the connection between designs with regular group actions and solutions to group ring equations. Everything is explained at an elementary level in terms of orthogonality sets and pairwise combinatorial designs--new and simple combinatorial notions which cover many of the commonly studied designs. Particular attention is paid to how the main themes apply in the important new context of cocyclic development. Indeed, this book contains a comprehensive account of cocyclic Hadamard matrices. The book was written to inspire researchers, ranging from the expert to the beginning student, in algebra or design theory, to investigate the fundamental algebraic problems posed by combinatorial design theory.
Renormalization and Effective Field Theory
Author: Kevin Costello
Publisher: American Mathematical Society
ISBN: 147047008X
Category : Mathematics
Languages : en
Pages : 251
Book Description
This book tells mathematicians about an amazing subject invented by physicists and it tells physicists how a master mathematician must proceed in order to understand it. Physicists who know quantum field theory can learn the powerful methodology of mathematical structure, while mathematicians can position themselves to use the magical ideas of quantum field theory in “mathematics” itself. The retelling of the tale mathematically by Kevin Costello is a beautiful tour de force. —Dennis Sullivan This book is quite a remarkable contribution. It should make perturbative quantum field theory accessible to mathematicians. There is a lot of insight in the way the author uses the renormalization group and effective field theory to analyze perturbative renormalization; this may serve as a springboard to a wider use of those topics, hopefully to an eventual nonperturbative understanding. —Edward Witten Quantum field theory has had a profound influence on mathematics, and on geometry in particular. However, the notorious difficulties of renormalization have made quantum field theory very inaccessible for mathematicians. This book provides complete mathematical foundations for the theory of perturbative quantum field theory, based on Wilson's ideas of low-energy effective field theory and on the Batalin–Vilkovisky formalism. As an example, a cohomological proof of perturbative renormalizability of Yang–Mills theory is presented. An effort has been made to make the book accessible to mathematicians who have had no prior exposure to quantum field theory. Graduate students who have taken classes in basic functional analysis and homological algebra should be able to read this book.
Publisher: American Mathematical Society
ISBN: 147047008X
Category : Mathematics
Languages : en
Pages : 251
Book Description
This book tells mathematicians about an amazing subject invented by physicists and it tells physicists how a master mathematician must proceed in order to understand it. Physicists who know quantum field theory can learn the powerful methodology of mathematical structure, while mathematicians can position themselves to use the magical ideas of quantum field theory in “mathematics” itself. The retelling of the tale mathematically by Kevin Costello is a beautiful tour de force. —Dennis Sullivan This book is quite a remarkable contribution. It should make perturbative quantum field theory accessible to mathematicians. There is a lot of insight in the way the author uses the renormalization group and effective field theory to analyze perturbative renormalization; this may serve as a springboard to a wider use of those topics, hopefully to an eventual nonperturbative understanding. —Edward Witten Quantum field theory has had a profound influence on mathematics, and on geometry in particular. However, the notorious difficulties of renormalization have made quantum field theory very inaccessible for mathematicians. This book provides complete mathematical foundations for the theory of perturbative quantum field theory, based on Wilson's ideas of low-energy effective field theory and on the Batalin–Vilkovisky formalism. As an example, a cohomological proof of perturbative renormalizability of Yang–Mills theory is presented. An effort has been made to make the book accessible to mathematicians who have had no prior exposure to quantum field theory. Graduate students who have taken classes in basic functional analysis and homological algebra should be able to read this book.