Author: Wolfgang C. Schlegel
Publisher: Springer Science & Business Media
ISBN: 3540299998
Category : Medical
Languages : en
Pages : 453
Book Description
- Summarizes the state of the art in the most relevant areas of medical physics and engineering applied to radiation oncology - Covers all relevant areas of the subject in detail, including 3D imaging and image processing, 3D treatment planning, modern treatment techniques, patient positioning, and aspects of verification and quality assurance - Conveys information in a readily understandable way that will appeal to professionals and students with a medical background as well as to newcomers to radiation oncology from the field of physics
New Technologies in Radiation Oncology
Author: Wolfgang C. Schlegel
Publisher: Springer Science & Business Media
ISBN: 3540299998
Category : Medical
Languages : en
Pages : 453
Book Description
- Summarizes the state of the art in the most relevant areas of medical physics and engineering applied to radiation oncology - Covers all relevant areas of the subject in detail, including 3D imaging and image processing, 3D treatment planning, modern treatment techniques, patient positioning, and aspects of verification and quality assurance - Conveys information in a readily understandable way that will appeal to professionals and students with a medical background as well as to newcomers to radiation oncology from the field of physics
Publisher: Springer Science & Business Media
ISBN: 3540299998
Category : Medical
Languages : en
Pages : 453
Book Description
- Summarizes the state of the art in the most relevant areas of medical physics and engineering applied to radiation oncology - Covers all relevant areas of the subject in detail, including 3D imaging and image processing, 3D treatment planning, modern treatment techniques, patient positioning, and aspects of verification and quality assurance - Conveys information in a readily understandable way that will appeal to professionals and students with a medical background as well as to newcomers to radiation oncology from the field of physics
Development and Validation of a Virtual Monte Carlo Radiotherapy Source Model and Characterization of the Influence of Heterogeneities on Dose Calculation Accuracy
Author: Michael Paul Speiser
Publisher:
ISBN:
Category :
Languages : en
Pages : 750
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 750
Book Description
Tissue Inhomogeneity Corrections for Megalovoltage Photon Beams
Author:
Publisher:
ISBN: 9781888340471
Category : Photon beams
Languages : en
Pages : 135
Book Description
Publisher:
ISBN: 9781888340471
Category : Photon beams
Languages : en
Pages : 135
Book Description
Monte Carlo Techniques in Radiation Therapy
Author: Joao Seco
Publisher: CRC Press
ISBN: 1466507926
Category : Medical
Languages : en
Pages : 344
Book Description
Modern cancer treatment relies on Monte Carlo simulations to help radiotherapists and clinical physicists better understand and compute radiation dose from imaging devices as well as exploit four-dimensional imaging data. With Monte Carlo-based treatment planning tools now available from commercial vendors, a complete transition to Monte Carlo-based dose calculation methods in radiotherapy could likely take place in the next decade. Monte Carlo Techniques in Radiation Therapy explores the use of Monte Carlo methods for modeling various features of internal and external radiation sources, including light ion beams. The book—the first of its kind—addresses applications of the Monte Carlo particle transport simulation technique in radiation therapy, mainly focusing on external beam radiotherapy and brachytherapy. It presents the mathematical and technical aspects of the methods in particle transport simulations. The book also discusses the modeling of medical linacs and other irradiation devices; issues specific to electron, photon, and proton ion beams and brachytherapy; and the optimization of treatment planning, radiation dosimetry, and quality assurance. Useful to clinical physicists, graduate students, and researchers, this book provides a detailed, state-of-the-art guide to the fundamentals, application, and customization of Monte Carlo techniques in radiotherapy. Through real-world examples, it illustrates the use of Monte Carlo modeling and simulations in dose calculation, beam delivery, kilovoltage and megavoltage imaging, proton radiography, device design, and much more.
Publisher: CRC Press
ISBN: 1466507926
Category : Medical
Languages : en
Pages : 344
Book Description
Modern cancer treatment relies on Monte Carlo simulations to help radiotherapists and clinical physicists better understand and compute radiation dose from imaging devices as well as exploit four-dimensional imaging data. With Monte Carlo-based treatment planning tools now available from commercial vendors, a complete transition to Monte Carlo-based dose calculation methods in radiotherapy could likely take place in the next decade. Monte Carlo Techniques in Radiation Therapy explores the use of Monte Carlo methods for modeling various features of internal and external radiation sources, including light ion beams. The book—the first of its kind—addresses applications of the Monte Carlo particle transport simulation technique in radiation therapy, mainly focusing on external beam radiotherapy and brachytherapy. It presents the mathematical and technical aspects of the methods in particle transport simulations. The book also discusses the modeling of medical linacs and other irradiation devices; issues specific to electron, photon, and proton ion beams and brachytherapy; and the optimization of treatment planning, radiation dosimetry, and quality assurance. Useful to clinical physicists, graduate students, and researchers, this book provides a detailed, state-of-the-art guide to the fundamentals, application, and customization of Monte Carlo techniques in radiotherapy. Through real-world examples, it illustrates the use of Monte Carlo modeling and simulations in dose calculation, beam delivery, kilovoltage and megavoltage imaging, proton radiography, device design, and much more.
The Modern Technology of Radiation Oncology
Author: Jake Van Dyk
Publisher: Medical Physics Publishing Corporation
ISBN:
Category : Medical
Languages : en
Pages : 1106
Book Description
Details technology associated with radiation oncology, emphasizing design of all equipment allied with radiation treatment. Describes procedures required to implement equipment in clinical service, covering needs assessment, purchase, acceptance, and commissioning, and explains quality assurance issues. Also addresses less common and evolving technologies. For medical physicists and radiation oncologists, as well as radiation therapists, dosimetrists, and engineering technologists. Includes bandw medical images and photos of equipment. Paper edition (unseen), $145.95. Annotation copyrighted by Book News, Inc., Portland, OR
Publisher: Medical Physics Publishing Corporation
ISBN:
Category : Medical
Languages : en
Pages : 1106
Book Description
Details technology associated with radiation oncology, emphasizing design of all equipment allied with radiation treatment. Describes procedures required to implement equipment in clinical service, covering needs assessment, purchase, acceptance, and commissioning, and explains quality assurance issues. Also addresses less common and evolving technologies. For medical physicists and radiation oncologists, as well as radiation therapists, dosimetrists, and engineering technologists. Includes bandw medical images and photos of equipment. Paper edition (unseen), $145.95. Annotation copyrighted by Book News, Inc., Portland, OR
Handbook of Radiotherapy Physics
Author: P Mayles
Publisher: CRC Press
ISBN: 1420012029
Category : Medical
Languages : en
Pages : 1472
Book Description
From background physics and biological models to the latest imaging and treatment modalities, the Handbook of Radiotherapy Physics: Theory and Practice covers all theoretical and practical aspects of radiotherapy physics. In this comprehensive reference, each part focuses on a major area of radiotherapy, beginning with an introduction by the
Publisher: CRC Press
ISBN: 1420012029
Category : Medical
Languages : en
Pages : 1472
Book Description
From background physics and biological models to the latest imaging and treatment modalities, the Handbook of Radiotherapy Physics: Theory and Practice covers all theoretical and practical aspects of radiotherapy physics. In this comprehensive reference, each part focuses on a major area of radiotherapy, beginning with an introduction by the
Monte Carlo Techniques in Radiation Therapy
Author: Frank Verhaegen
Publisher: CRC Press
ISBN: 1000455556
Category : Medical
Languages : en
Pages : 291
Book Description
About ten years after the first edition comes this second edition of Monte Carlo Techniques in Radiation Therapy: Introduction, Source Modelling, and Patient Dose Calculations, thoroughly updated and extended with the latest topics, edited by Frank Verhaegen and Joao Seco. This book aims to provide a brief introduction to the history and basics of Monte Carlo simulation, but again has a strong focus on applications in radiotherapy. Since the first edition, Monte Carlo simulation has found many new applications, which are included in detail. The applications sections in this book cover the following: Modelling transport of photons, electrons, protons, and ions Modelling radiation sources for external beam radiotherapy Modelling radiation sources for brachytherapy Design of radiation sources Modelling dynamic beam delivery Patient dose calculations in external beam radiotherapy Patient dose calculations in brachytherapy Use of artificial intelligence in Monte Carlo simulations This book is intended for both students and professionals, both novice and experienced, in medical radiotherapy physics. It combines overviews of development, methods, and references to facilitate Monte Carlo studies.
Publisher: CRC Press
ISBN: 1000455556
Category : Medical
Languages : en
Pages : 291
Book Description
About ten years after the first edition comes this second edition of Monte Carlo Techniques in Radiation Therapy: Introduction, Source Modelling, and Patient Dose Calculations, thoroughly updated and extended with the latest topics, edited by Frank Verhaegen and Joao Seco. This book aims to provide a brief introduction to the history and basics of Monte Carlo simulation, but again has a strong focus on applications in radiotherapy. Since the first edition, Monte Carlo simulation has found many new applications, which are included in detail. The applications sections in this book cover the following: Modelling transport of photons, electrons, protons, and ions Modelling radiation sources for external beam radiotherapy Modelling radiation sources for brachytherapy Design of radiation sources Modelling dynamic beam delivery Patient dose calculations in external beam radiotherapy Patient dose calculations in brachytherapy Use of artificial intelligence in Monte Carlo simulations This book is intended for both students and professionals, both novice and experienced, in medical radiotherapy physics. It combines overviews of development, methods, and references to facilitate Monte Carlo studies.
Radiation Oncology Physics
Author: International Atomic Energy Agency
Publisher: IAEA
ISBN:
Category : Business & Economics
Languages : en
Pages : 704
Book Description
This publication is aimed at students and teachers involved in teaching programmes in field of medical radiation physics, and it covers the basic medical physics knowledge required in the form of a syllabus for modern radiation oncology. The information will be useful to those preparing for professional certification exams in radiation oncology, medical physics, dosimetry or radiotherapy technology.
Publisher: IAEA
ISBN:
Category : Business & Economics
Languages : en
Pages : 704
Book Description
This publication is aimed at students and teachers involved in teaching programmes in field of medical radiation physics, and it covers the basic medical physics knowledge required in the form of a syllabus for modern radiation oncology. The information will be useful to those preparing for professional certification exams in radiation oncology, medical physics, dosimetry or radiotherapy technology.
World Congress of Medical Physics and Biomedical Engineering 2006
Author: Sun I. Kim
Publisher: Springer Science & Business Media
ISBN: 3540368396
Category : Technology & Engineering
Languages : en
Pages : 4361
Book Description
These proceedings of the World Congress 2006, the fourteenth conference in this series, offer a strong scientific program covering a wide range of issues and challenges which are currently present in Medical physics and Biomedical Engineering. About 2,500 peer reviewed contributions are presented in a six volume book, comprising 25 tracks, joint conferences and symposia, and including invited contributions from well known researchers in this field.
Publisher: Springer Science & Business Media
ISBN: 3540368396
Category : Technology & Engineering
Languages : en
Pages : 4361
Book Description
These proceedings of the World Congress 2006, the fourteenth conference in this series, offer a strong scientific program covering a wide range of issues and challenges which are currently present in Medical physics and Biomedical Engineering. About 2,500 peer reviewed contributions are presented in a six volume book, comprising 25 tracks, joint conferences and symposia, and including invited contributions from well known researchers in this field.
Proton Therapy Physics
Author: Harald Paganetti
Publisher: CRC Press
ISBN: 1439836450
Category : Medical
Languages : en
Pages : 691
Book Description
Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also examines computerized treatment plan optimization, methods for in vivo dose or beam range verification, the safety of patients and operating personnel, and the biological implications of using protons from a physics perspective. The final chapter illustrates the use of risk models for common tissue complications in treatment optimization. Along with exploring quality assurance issues and biological considerations, this practical guide collects the latest clinical studies on the use of protons in treatment planning and radiation monitoring. Suitable for both newcomers in medical physics and more seasoned specialists in radiation oncology, the book helps readers understand the uncertainties and limitations of precisely shaped dose distribution.
Publisher: CRC Press
ISBN: 1439836450
Category : Medical
Languages : en
Pages : 691
Book Description
Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also examines computerized treatment plan optimization, methods for in vivo dose or beam range verification, the safety of patients and operating personnel, and the biological implications of using protons from a physics perspective. The final chapter illustrates the use of risk models for common tissue complications in treatment optimization. Along with exploring quality assurance issues and biological considerations, this practical guide collects the latest clinical studies on the use of protons in treatment planning and radiation monitoring. Suitable for both newcomers in medical physics and more seasoned specialists in radiation oncology, the book helps readers understand the uncertainties and limitations of precisely shaped dose distribution.