Molybdenum Trioxide and Molybdenum Carbide as Promising Hydrodeoxygenation Catalysts for Biomass Conversion PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Molybdenum Trioxide and Molybdenum Carbide as Promising Hydrodeoxygenation Catalysts for Biomass Conversion PDF full book. Access full book title Molybdenum Trioxide and Molybdenum Carbide as Promising Hydrodeoxygenation Catalysts for Biomass Conversion by Karthick Murugappan. Download full books in PDF and EPUB format.

Molybdenum Trioxide and Molybdenum Carbide as Promising Hydrodeoxygenation Catalysts for Biomass Conversion

Molybdenum Trioxide and Molybdenum Carbide as Promising Hydrodeoxygenation Catalysts for Biomass Conversion PDF Author: Karthick Murugappan
Publisher:
ISBN:
Category :
Languages : en
Pages : 176

Book Description
Growing concerns due to rising CO2 emissions have made biomass an indispensable source of renewable fuels and chemicals. However, biomass inherently has high oxygen content, which translates to low energy density, thereby necessitating a deoxygenation step before being utilized as fuels. Recently, MoO3 and Mo2C have emerged as promising earth-abundant cheap catalysts that perform hydrodeoxygenation (HDO) at relatively low temperatures ( 673 K) and ambient H2 pressures wherein oxygen is selectively removed as water. However, there exists a significant knowledge gap in understanding the stability and the active phases responsible for HDO of these catalysts. Furthermore, their applicability for real biomass conversions has not been largely demonstrated. In this thesis, first, HDO of m-cresol, a biomass-derived model compound, is investigated over bulk and supported MoO 3 catalysts. Detailed reactivity and characterization studies reveal that Mo5+ species plays a critical role during HDO. Specifically, TiO2 and ZrO2 are identified as ideal supports as they feature superior HDO reactivity and stability over bulk MoO3 by stabilizing intermediate Mo oxidation states (i.e. Mo5+) while bulk MoO 3 over-reduces to inactive metallic Mo. Translating from model compound studies, supported MoO3 catalysts are demonstrated to be effective in converting biomass (pine) pyrolysis vapors to hydrocarbons (ca. 30 % yield). In comparison with MoO 3, Mo2C is significantly more stable and selective for HDO of 4-methylanisole to toluene under identical reaction conditions. Mo2C predominantly breaks the stronger phenolic C-0 bond while MoO 3 also breaks the weaker aliphatic C-0 bond, likely due to the presence of Bronsted acid sites. To gain insights into the surface active sites, operando near-ambient XPS is employed during HDO and this technique revealed that HDO seems to operate via distinct active sites over both these materials. Finally, Mo2C is shown to be effective in upgrading real lignin streams to a single product propylbenzene, a precursor for renewable polymer. Overall, this thesis demonstrates the applicability of MoO3 and Mo2C in real biomass conversions and provides insights on the working nature of these catalysts, which will enable the design of more effective HDO catalysts.

Molybdenum Trioxide and Molybdenum Carbide as Promising Hydrodeoxygenation Catalysts for Biomass Conversion

Molybdenum Trioxide and Molybdenum Carbide as Promising Hydrodeoxygenation Catalysts for Biomass Conversion PDF Author: Karthick Murugappan
Publisher:
ISBN:
Category :
Languages : en
Pages : 176

Book Description
Growing concerns due to rising CO2 emissions have made biomass an indispensable source of renewable fuels and chemicals. However, biomass inherently has high oxygen content, which translates to low energy density, thereby necessitating a deoxygenation step before being utilized as fuels. Recently, MoO3 and Mo2C have emerged as promising earth-abundant cheap catalysts that perform hydrodeoxygenation (HDO) at relatively low temperatures ( 673 K) and ambient H2 pressures wherein oxygen is selectively removed as water. However, there exists a significant knowledge gap in understanding the stability and the active phases responsible for HDO of these catalysts. Furthermore, their applicability for real biomass conversions has not been largely demonstrated. In this thesis, first, HDO of m-cresol, a biomass-derived model compound, is investigated over bulk and supported MoO 3 catalysts. Detailed reactivity and characterization studies reveal that Mo5+ species plays a critical role during HDO. Specifically, TiO2 and ZrO2 are identified as ideal supports as they feature superior HDO reactivity and stability over bulk MoO3 by stabilizing intermediate Mo oxidation states (i.e. Mo5+) while bulk MoO 3 over-reduces to inactive metallic Mo. Translating from model compound studies, supported MoO3 catalysts are demonstrated to be effective in converting biomass (pine) pyrolysis vapors to hydrocarbons (ca. 30 % yield). In comparison with MoO 3, Mo2C is significantly more stable and selective for HDO of 4-methylanisole to toluene under identical reaction conditions. Mo2C predominantly breaks the stronger phenolic C-0 bond while MoO 3 also breaks the weaker aliphatic C-0 bond, likely due to the presence of Bronsted acid sites. To gain insights into the surface active sites, operando near-ambient XPS is employed during HDO and this technique revealed that HDO seems to operate via distinct active sites over both these materials. Finally, Mo2C is shown to be effective in upgrading real lignin streams to a single product propylbenzene, a precursor for renewable polymer. Overall, this thesis demonstrates the applicability of MoO3 and Mo2C in real biomass conversions and provides insights on the working nature of these catalysts, which will enable the design of more effective HDO catalysts.

Synthesis and Characterisation of Zirconia Supported Molybdenum Oxide and Molybdenum Carbide Catalysts for Hydroconversion of N-heptane

Synthesis and Characterisation of Zirconia Supported Molybdenum Oxide and Molybdenum Carbide Catalysts for Hydroconversion of N-heptane PDF Author: Femi Francis Oloye
Publisher:
ISBN:
Category : Catalyst supports
Languages : en
Pages : 0

Book Description


Molybdenum Carbide Catalysts

Molybdenum Carbide Catalysts PDF Author: Jae Sung Lee
Publisher:
ISBN:
Category : Catalysts
Languages : en
Pages : 520

Book Description


Catalysis

Catalysis PDF Author: James J Spivey
Publisher: Royal Society of Chemistry
ISBN: 1839163127
Category : Science
Languages : en
Pages : 494

Book Description
This volume looks at modern approaches to catalysis and reviews the extensive literature. Chapters highlight application of 2D materials in biomass conversion catalysis, plasmonic photocatalysis, catalytic demonstration of mesoporosity in the hierarchical zeolite and the effect of surface phase oxides on supported metals and catalysis. Looking to the future a chapter on ab initio machine learning for accelerating catalytic materials discovery is included. Appealing broadly to researchers in academia and industry, these illustrative chapters bridge the gap from academic studies in the laboratory to practical applications in industry not only for catalysis field but also for environmental protection. Other chapters with an industrial perspective include heterogeneous and homogeneous catalytic routes for vinyl acetate synthesis, catalysis for production of jet fuel from renewable sources by HDO/HDC and microwave-assisted catalysis for fuel conversion. Chemical reactions in ball mills is also explored. The book will be of great benefit to any researcher wanting a succinct reference on developments in this area now and looking to the future.

Chemical Catalysts for Biomass Upgrading

Chemical Catalysts for Biomass Upgrading PDF Author: Mark Crocker
Publisher: John Wiley & Sons
ISBN: 3527344667
Category : Technology & Engineering
Languages : en
Pages : 634

Book Description
A comprehensive reference to the use of innovative catalysts and processes to turn biomass into value-added chemicals Chemical Catalysts for Biomass Upgrading offers detailed descriptions of catalysts and catalytic processes employed in the synthesis of chemicals and fuels from the most abundant and important biomass types. The contributors?noted experts on the topic?focus on the application of catalysts to the pyrolysis of whole biomass and to the upgrading of bio-oils. The authors discuss catalytic approaches to the processing of biomass-derived oxygenates, as exemplified by sugars, via reactions such as reforming, hydrogenation, oxidation, and condensation reactions. Additionally, the book provides an overview of catalysts for lignin valorization via oxidative and reductive methods and considers the conversion of fats and oils to fuels and terminal olefins by means of esterification/transesterification, hydrodeoxygenation, and decarboxylation/decarbonylation processes. The authors also provide an overview of conversion processes based on terpenes and chitin, two emerging feedstocks with a rich chemistry, and summarize some of the emerging trends in the field. This important book: -Provides a comprehensive review of innovative catalysts, catalytic processes, and catalyst design -Offers a guide to one of the most promising ways to find useful alternatives for fossil fuel resources -Includes information on the most abundant and important types of biomass feedstocks -Examines fields such as catalytic cracking, pyrolysis, depolymerization, and many more Written for catalytic chemists, process engineers, environmental chemists, bioengineers, organic chemists, and polymer chemists, Chemical Catalysts for Biomass Upgrading presents deep insights on the most important aspects of biomass upgrading and their various types.

Study of the Properties of Molybdenum Compounds for the Catalytic Oxidation of Logistic Fuels

Study of the Properties of Molybdenum Compounds for the Catalytic Oxidation of Logistic Fuels PDF Author: Oscar Gerardo Marin-Flores
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Biomass, Biofuels, Biochemicals

Biomass, Biofuels, Biochemicals PDF Author: S. Saravanamurugan
Publisher: Elsevier
ISBN: 0444643087
Category : Technology & Engineering
Languages : en
Pages : 510

Book Description
Biomass, Biofuels, Biochemicals: Recent Advances in Development of Platform Chemicals provides a detailed overview on the experimentally developed methods that facilitate platform chemicals derivation from biomass-based substrates with robust catalyst systems. In addition, the book highlights the green chemistry approach towards platform chemical production. Chapters discuss platform chemicals and global market volumes, the optimization of process schemes and reaction parameters with respect to achieving a high yield of targeted platform chemicals, such as sugars and furonic compounds by modifying the respective catalytic system, the influence of solvents on reaction selectivity and product distribution, and the long-term stability of employed catalysts. Overall, the objectives of the book are to provide the reader with an understanding of the societal importance of platform chemicals, an assessment of the techno-economic viability of biomass valorization processes, catalyst design for a specific reaction, and the design of a catalytic system. - Covers recent developments on platform chemicals - Provides comprehensive technological developments on specific platform chemicals - Covers organic transformations, catalytic synthesis, thermal stability, reaction parameters and solvent effect - Includes case studies on the production of a number of chemicals, such as Levulinic acid, glycerol, phenol derivatives, and more

Nanoporous Catalysts for Biomass Conversion

Nanoporous Catalysts for Biomass Conversion PDF Author: Feng-Shou Xiao
Publisher: John Wiley & Sons
ISBN: 1119128080
Category : Science
Languages : en
Pages : 354

Book Description
A comprehensive introduction to the design, synthesis, characterization, and catalytic properties of nanoporous catalysts for the biomass conversion With the specter of peak oil demand looming on the horizon, and mounting concerns over the environmental impact of greenhouse gas emissions, biomass has taken on a prominent role as a sustainable alternative fuel source. One critical aspect of the biomass challenge is the development of novel catalytic materials for effective and controllable biomass conversion. Edited by two scientists recognized internationally for their pioneering work in the field, this book focuses on nanoporous catalysts, the most promising class of catalytic materials for the conversion of biomass into fuel and other products. Although various catalysts have been used in the conversion of biomass-derived feedstocks, nanoporous catalysts exhibit high catalytic activities and/or unique product selectivities due to their large surface area, open nanopores, and highly dispersed active sites. This book covers an array of nanoporous catalysts currently in use for biomass conversion, including resins, metal oxides, carbons, mesoporous silicates, polydivinylbenzene, and zeolites. The authors summarize the design, synthesis, characterization and catalytic properties of these nanoporous catalysts for biomass conversions, discussing the features of these catalysts and considering future opportunities for developing more efficient catalysts. Topics covered include: Resins for biomass conversion Supported metal oxides/sulfides for biomass oxidation and hydrogenation Nanoporous metal oxides Ordered mesoporous silica-based catalysts Sulfonated carbon catalysts Porous polydivinylbenzene Aluminosilicate zeolites for bio-oil upgrading Rice straw Hydrogenation for sugar conversion Lignin depolymerization Timely, authoritative, and comprehensive, Nanoporous Catalysts for Biomass Conversion is a valuable working resource for academic researchers, industrial scientists and graduate students working in the fields of biomass conversion, catalysis, materials science, green and sustainable chemistry, and chemical/process engineering.

Green Diesel: An Alternative to Biodiesel and Petrodiesel

Green Diesel: An Alternative to Biodiesel and Petrodiesel PDF Author: Mohammad Aslam
Publisher: Springer Nature
ISBN: 9811922357
Category : Technology & Engineering
Languages : en
Pages : 386

Book Description
This book covers the entire spectrum of green diesel and their applications in existing CI engines. This book discusses how a green diesel is a better fuel than biodiesel and petrodiesel and more suitable fuels for sustainable future development. The book begins with a concise overview of the fundamentals of the green diesel properties, preparation, and characterization of green diesel using hydroprocessing technology. The book covers recent developments in the domain of green diesel derived particularly from the second-/third-generation feedstocks. Various topics covered in this book include the catalysts involved in the processing of green diesel, characterization of the products as per ASTM/EN protocols. In addition, the book also illustrates characteristic features of green diesel and how it is different from biodiesel and petrodiesel. Other chapters cover performance and emission characteristics of green diesel in CI engines and techno-economic analysis. Moreover, the current status of green diesel industries is also incorporated. This book is of particular interest to graduate students and academic or industrial researchers/professionals working in the area of green diesel/green energy, bioenergy and mechanical, automobile, and chemical engineering. This book makes a forceful foundation for the establishment of green diesel refineries/biorefineries for a sustainable, cleaner, and greener future.

Studies of Molybdenum Carbide Catalysts

Studies of Molybdenum Carbide Catalysts PDF Author: Gurdeep Singh Ranhotra
Publisher:
ISBN:
Category :
Languages : en
Pages : 268

Book Description