Author: Yoram Groner
Publisher: Springer
ISBN: 9811032335
Category : Medical
Languages : en
Pages : 518
Book Description
This volume provides the reader with an overview of the diverse functions of the RUNX family of genes. As highlighted in the introduction and several of the 29 chapters, humans and other mammals have three RUNX genes that are known to play specific roles in blood, bone and neuronal development. However, their evolutionary history has recently been traced back to unicellular organisms and their involvement in many well-known signaling pathways (Wnt, TGFb, Notch, Hippo) is indicative of a more general function in cell biology. Their documented roles in cell fate decisions include control of proliferation, differentiation, survival, senescence and autophagy. The pleiotropic effects of RUNX in development are mirrored in cancer, where RUNX genes can function as oncogenes that collaborate strongly with Myc family oncogenes or as tumour suppressor genes. In the latter role, they display hallmarks of both ‘gatekeepers’ that modulate p53 responses and ‘caretakers’ that protect the genome from DNA damage. Several chapters focus on the importance of these genes in leukemia research, where RUNX1 and CBFB are frequently affected by chromosomal translocations that generate fusion oncoproteins, while recent studies suggest wider roles for RUNX modulation in solid cancers. Moreover, RUNX genes are intimately involved in the development and regulation of the immune system, while emerging evidence suggests a role in innate immunity to infectious agents, including HIV. At the biochemical level, the RUNX family can serve as activators or repressors of transcription and as stable mediators of epigenetic memory through mitosis. Not surprisingly, RUNX activity is controlled at multiple levels, this includes miRNAs and a plethora of post-translational modifications. Several chapters highlight the interplay between the three mammalian RUNX genes, where cross-talk and partial functional redundancies are evident. Finally, structural analysis of the RUNX/CBFB interaction has led to the development of small molecule inhibitors that provide exciting new tools to decipher the roles of RUNX in development and as targets for therapy. This volume provides a compendium and reference source that will be of broad interest to cancer researchers, developmental biologists and immunologists.
RUNX Proteins in Development and Cancer
Author: Yoram Groner
Publisher: Springer
ISBN: 9811032335
Category : Medical
Languages : en
Pages : 518
Book Description
This volume provides the reader with an overview of the diverse functions of the RUNX family of genes. As highlighted in the introduction and several of the 29 chapters, humans and other mammals have three RUNX genes that are known to play specific roles in blood, bone and neuronal development. However, their evolutionary history has recently been traced back to unicellular organisms and their involvement in many well-known signaling pathways (Wnt, TGFb, Notch, Hippo) is indicative of a more general function in cell biology. Their documented roles in cell fate decisions include control of proliferation, differentiation, survival, senescence and autophagy. The pleiotropic effects of RUNX in development are mirrored in cancer, where RUNX genes can function as oncogenes that collaborate strongly with Myc family oncogenes or as tumour suppressor genes. In the latter role, they display hallmarks of both ‘gatekeepers’ that modulate p53 responses and ‘caretakers’ that protect the genome from DNA damage. Several chapters focus on the importance of these genes in leukemia research, where RUNX1 and CBFB are frequently affected by chromosomal translocations that generate fusion oncoproteins, while recent studies suggest wider roles for RUNX modulation in solid cancers. Moreover, RUNX genes are intimately involved in the development and regulation of the immune system, while emerging evidence suggests a role in innate immunity to infectious agents, including HIV. At the biochemical level, the RUNX family can serve as activators or repressors of transcription and as stable mediators of epigenetic memory through mitosis. Not surprisingly, RUNX activity is controlled at multiple levels, this includes miRNAs and a plethora of post-translational modifications. Several chapters highlight the interplay between the three mammalian RUNX genes, where cross-talk and partial functional redundancies are evident. Finally, structural analysis of the RUNX/CBFB interaction has led to the development of small molecule inhibitors that provide exciting new tools to decipher the roles of RUNX in development and as targets for therapy. This volume provides a compendium and reference source that will be of broad interest to cancer researchers, developmental biologists and immunologists.
Publisher: Springer
ISBN: 9811032335
Category : Medical
Languages : en
Pages : 518
Book Description
This volume provides the reader with an overview of the diverse functions of the RUNX family of genes. As highlighted in the introduction and several of the 29 chapters, humans and other mammals have three RUNX genes that are known to play specific roles in blood, bone and neuronal development. However, their evolutionary history has recently been traced back to unicellular organisms and their involvement in many well-known signaling pathways (Wnt, TGFb, Notch, Hippo) is indicative of a more general function in cell biology. Their documented roles in cell fate decisions include control of proliferation, differentiation, survival, senescence and autophagy. The pleiotropic effects of RUNX in development are mirrored in cancer, where RUNX genes can function as oncogenes that collaborate strongly with Myc family oncogenes or as tumour suppressor genes. In the latter role, they display hallmarks of both ‘gatekeepers’ that modulate p53 responses and ‘caretakers’ that protect the genome from DNA damage. Several chapters focus on the importance of these genes in leukemia research, where RUNX1 and CBFB are frequently affected by chromosomal translocations that generate fusion oncoproteins, while recent studies suggest wider roles for RUNX modulation in solid cancers. Moreover, RUNX genes are intimately involved in the development and regulation of the immune system, while emerging evidence suggests a role in innate immunity to infectious agents, including HIV. At the biochemical level, the RUNX family can serve as activators or repressors of transcription and as stable mediators of epigenetic memory through mitosis. Not surprisingly, RUNX activity is controlled at multiple levels, this includes miRNAs and a plethora of post-translational modifications. Several chapters highlight the interplay between the three mammalian RUNX genes, where cross-talk and partial functional redundancies are evident. Finally, structural analysis of the RUNX/CBFB interaction has led to the development of small molecule inhibitors that provide exciting new tools to decipher the roles of RUNX in development and as targets for therapy. This volume provides a compendium and reference source that will be of broad interest to cancer researchers, developmental biologists and immunologists.
Transcriptional Corepressors: Mediators of Eukaryotic Gene Repression
Author: Martin L. Privalsky
Publisher: Springer Science & Business Media
ISBN: 3662105950
Category : Medical
Languages : en
Pages : 202
Book Description
Corepressors are newly discovered assemblies of proteins that play essential roles in eukaryotic gene regulation. Recent discoveries about corepressors have provided new insights into the molecular basis of gene regulation, and have established surprising connections between the mechanisms of action of a wide variety of transcriptional regulators. The reviews in this volume critically discuss the nature, mechanisms of action, and physiological roles of corepressors in a diverse assortment of biological systems. Both basic and clinical investigators will be able to find relevant information. The comprehensive nature of the compilation, and the breadth of the reviews, are intended to provide the reader with an excellent introduction to the newly emergent and rapidly-growing field of corepressor research. A valuable and detailed reference guide.
Publisher: Springer Science & Business Media
ISBN: 3662105950
Category : Medical
Languages : en
Pages : 202
Book Description
Corepressors are newly discovered assemblies of proteins that play essential roles in eukaryotic gene regulation. Recent discoveries about corepressors have provided new insights into the molecular basis of gene regulation, and have established surprising connections between the mechanisms of action of a wide variety of transcriptional regulators. The reviews in this volume critically discuss the nature, mechanisms of action, and physiological roles of corepressors in a diverse assortment of biological systems. Both basic and clinical investigators will be able to find relevant information. The comprehensive nature of the compilation, and the breadth of the reviews, are intended to provide the reader with an excellent introduction to the newly emergent and rapidly-growing field of corepressor research. A valuable and detailed reference guide.
Dissertation Abstracts International
Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 768
Book Description
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 768
Book Description
Transcriptional Repression by Dorsal and Groucho During Dorsal/ventral Patterning of the Drosophila Embryo
Author: Rubén Darío Flores-Saaib
Publisher:
ISBN:
Category :
Languages : en
Pages : 320
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 320
Book Description
Drosophila Eye Development
Author: Kevin Moses
Publisher: Springer Science & Business Media
ISBN: 9783540425908
Category : Medical
Languages : en
Pages : 296
Book Description
1 Kevin Moses It is now 25 years since the study of the development of the compound eye in Drosophila really began with a classic paper (Ready et al. 1976). In 1864, August Weismann published a monograph on the development of Diptera and included some beautiful drawings of the developing imaginal discs (Weismann 1864). One of these is the first description of the third instar eye disc in which Weismann drew a vertical line separating a posterior domain that included a regular pattern of clustered cells from an anterior domain without such a pattern. Weismann suggested that these clusters were the precursors of the adult ommatidia and that the line marks the anterior edge of the eye. In his first suggestion he was absolutely correct - in his second he was wrong. The vertical line shown was not the anterior edge of the eye, but the anterior edge of a moving wave of patterning and cell type specification that 112 years later (1976) Ready, Hansen and Benzer would name the "morphogenetic furrow". While it is too late to hear from August Weismann, it is a particular pleasure to be able to include a chapter in this Volume from the first author of that 1976 paper: Don Ready! These past 25 years have seen an astonishing explosion in the study of the fly eye (see Fig.
Publisher: Springer Science & Business Media
ISBN: 9783540425908
Category : Medical
Languages : en
Pages : 296
Book Description
1 Kevin Moses It is now 25 years since the study of the development of the compound eye in Drosophila really began with a classic paper (Ready et al. 1976). In 1864, August Weismann published a monograph on the development of Diptera and included some beautiful drawings of the developing imaginal discs (Weismann 1864). One of these is the first description of the third instar eye disc in which Weismann drew a vertical line separating a posterior domain that included a regular pattern of clustered cells from an anterior domain without such a pattern. Weismann suggested that these clusters were the precursors of the adult ommatidia and that the line marks the anterior edge of the eye. In his first suggestion he was absolutely correct - in his second he was wrong. The vertical line shown was not the anterior edge of the eye, but the anterior edge of a moving wave of patterning and cell type specification that 112 years later (1976) Ready, Hansen and Benzer would name the "morphogenetic furrow". While it is too late to hear from August Weismann, it is a particular pleasure to be able to include a chapter in this Volume from the first author of that 1976 paper: Don Ready! These past 25 years have seen an astonishing explosion in the study of the fly eye (see Fig.
American Doctoral Dissertations
Author:
Publisher:
ISBN:
Category : Dissertation abstracts
Languages : en
Pages : 848
Book Description
Publisher:
ISBN:
Category : Dissertation abstracts
Languages : en
Pages : 848
Book Description
Mechanisms in Transcriptional Regulation
Author: Albert J. Courey
Publisher: John Wiley & Sons
ISBN: 1444300458
Category : Science
Languages : en
Pages : 248
Book Description
Mechanisms in Transcriptional Regulation provides a concisediscussion of the fundamental concepts in transcription and itsregulation. Covers RNA polymerases, transcriptional machinery, mechanismsof transcriptional activation, the histone code hypothesis, theepigenetic control of transcription, and combinatorial control insignaling and development Features over 80 figures available to download online Chapters include comprehensive reading lists, boxeshighlighting theoretical concepts and experimental methods andproblems designed to build and test understanding
Publisher: John Wiley & Sons
ISBN: 1444300458
Category : Science
Languages : en
Pages : 248
Book Description
Mechanisms in Transcriptional Regulation provides a concisediscussion of the fundamental concepts in transcription and itsregulation. Covers RNA polymerases, transcriptional machinery, mechanismsof transcriptional activation, the histone code hypothesis, theepigenetic control of transcription, and combinatorial control insignaling and development Features over 80 figures available to download online Chapters include comprehensive reading lists, boxeshighlighting theoretical concepts and experimental methods andproblems designed to build and test understanding
Transcriptional and Epigenetic Mechanisms Regulating Normal and Aberrant Blood Cell Development
Author: Constanze Bonifer
Publisher: Springer Science & Business Media
ISBN: 3642451985
Category : Medical
Languages : en
Pages : 414
Book Description
During vertebrate hematopoiesis many specialized cell types are formed with vastly different functions such as B cells, T cells, granulocytes, macrophages, erythrocytes and megakaryocytes. To tightly control the enormous proliferative potential of developing blood cells, an intricately balanced signaling and transcription network has evolved that ensures that the different cell types are formed at the right time and in the right numbers. Intricate regulatory mechanisms ensure that blood cells function properly and have a determined life span. Moreover, in the adaptive immune system, long-lived memory cells have evolved that ensure that when pathogens have been seen once they will never cause a problem again. In this book we will therefore make a journey from asking how more primitive organisms use the epigenetic regulatory machinery to balance growth with differentiation control towards digging deep into what controls the function of specialized cells of the human immune system. We will first discover that flies make blood but exist without blood vessels, why fish make blood cells in the kidney and which precise genetic circuitries are required for these developmental pathways. We will then learn the regulatory principles that drive the differentiation of mature blood cells from stem cells and what controls their function in mammals. In the process, we will find out what unites hematopoietic stem cells and endothelial cells. Finally, we will shed light on the molecular mechanisms that either alter hematopoietic cell differentiation or lead to the development of cells with impaired function.
Publisher: Springer Science & Business Media
ISBN: 3642451985
Category : Medical
Languages : en
Pages : 414
Book Description
During vertebrate hematopoiesis many specialized cell types are formed with vastly different functions such as B cells, T cells, granulocytes, macrophages, erythrocytes and megakaryocytes. To tightly control the enormous proliferative potential of developing blood cells, an intricately balanced signaling and transcription network has evolved that ensures that the different cell types are formed at the right time and in the right numbers. Intricate regulatory mechanisms ensure that blood cells function properly and have a determined life span. Moreover, in the adaptive immune system, long-lived memory cells have evolved that ensure that when pathogens have been seen once they will never cause a problem again. In this book we will therefore make a journey from asking how more primitive organisms use the epigenetic regulatory machinery to balance growth with differentiation control towards digging deep into what controls the function of specialized cells of the human immune system. We will first discover that flies make blood but exist without blood vessels, why fish make blood cells in the kidney and which precise genetic circuitries are required for these developmental pathways. We will then learn the regulatory principles that drive the differentiation of mature blood cells from stem cells and what controls their function in mammals. In the process, we will find out what unites hematopoietic stem cells and endothelial cells. Finally, we will shed light on the molecular mechanisms that either alter hematopoietic cell differentiation or lead to the development of cells with impaired function.
Molecular Mechanisms of Notch Signaling
Author: Tilman Borggrefe
Publisher: Springer
ISBN: 3319895125
Category : Science
Languages : en
Pages : 417
Book Description
This book describes the Notch signaling pathway with a focus on molecular mechanisms. The Notch signaling pathway is a seemingly simple pathway that does not involve any second messenger. Upon ligand binding two consecutive proteolytic cleavages of the NOTCH receptor release the Notch intracellular domain from the membrane. The Notch intracellular domain migrates into the nucleus and activates gene expression. Recently, new technologies allowed us to better understand this pivotal signaling cascade and revealed new regulatory mechanisms. The different chapters cover many aspects of the Notch signaling focusing on the mechanisms governing the receptor/ligand interaction as well as on the downstream intracellular signaling events. Aspects of both canonical and non-canonical signaling are discussed and the function of Notch signaling in physiological and pathological contexts are elucidated. This book is not only intended for experts but it should also be a useful resource for young, sprouting scientists or interested scientists from other research areas, who may use this book as a stimulating starting point for further discoveries and developments.
Publisher: Springer
ISBN: 3319895125
Category : Science
Languages : en
Pages : 417
Book Description
This book describes the Notch signaling pathway with a focus on molecular mechanisms. The Notch signaling pathway is a seemingly simple pathway that does not involve any second messenger. Upon ligand binding two consecutive proteolytic cleavages of the NOTCH receptor release the Notch intracellular domain from the membrane. The Notch intracellular domain migrates into the nucleus and activates gene expression. Recently, new technologies allowed us to better understand this pivotal signaling cascade and revealed new regulatory mechanisms. The different chapters cover many aspects of the Notch signaling focusing on the mechanisms governing the receptor/ligand interaction as well as on the downstream intracellular signaling events. Aspects of both canonical and non-canonical signaling are discussed and the function of Notch signaling in physiological and pathological contexts are elucidated. This book is not only intended for experts but it should also be a useful resource for young, sprouting scientists or interested scientists from other research areas, who may use this book as a stimulating starting point for further discoveries and developments.
Advances in Invertebrate (Neuro)Endocrinology
Author: Saber Saleuddin
Publisher: CRC Press
ISBN: 1000047482
Category : History
Languages : en
Pages : 420
Book Description
Advances in Invertebrate (Neuro)Endocrinology: A Collection of Reviews in the Post-Genomic Era (2-volume set) provides an informative series of reviews from expert scientists who are at the forefront of their research into the endocrinology of invertebrates. These two volumes are timely and appropriate in this post-genomic era because of the rapid pace of change brought about by genome projects, functional genomics, and genetics (omics technologies). The volume shows the rich history and strong tradition of cutting-edge research using invertebrates that has opened up our broader understanding of comparative endocrinology and the evolution of regulatory pathways and systems. These reviews set the scene and context for this exciting new era of understanding that has come from this post-genomic revolution. This book undertakes the daunting task of covering most of the diverse endocrine systems that exist among invertebrates. The papers in this book will advance our knowledge of invertebrate endocrinology but also of endocrinology in general, making the book will be valuable to researchers and students.
Publisher: CRC Press
ISBN: 1000047482
Category : History
Languages : en
Pages : 420
Book Description
Advances in Invertebrate (Neuro)Endocrinology: A Collection of Reviews in the Post-Genomic Era (2-volume set) provides an informative series of reviews from expert scientists who are at the forefront of their research into the endocrinology of invertebrates. These two volumes are timely and appropriate in this post-genomic era because of the rapid pace of change brought about by genome projects, functional genomics, and genetics (omics technologies). The volume shows the rich history and strong tradition of cutting-edge research using invertebrates that has opened up our broader understanding of comparative endocrinology and the evolution of regulatory pathways and systems. These reviews set the scene and context for this exciting new era of understanding that has come from this post-genomic revolution. This book undertakes the daunting task of covering most of the diverse endocrine systems that exist among invertebrates. The papers in this book will advance our knowledge of invertebrate endocrinology but also of endocrinology in general, making the book will be valuable to researchers and students.