Author: Marvin Isadore Knopp
Publisher: American Mathematical Soc.
ISBN: 0821844881
Category : Mathematics
Languages : en
Pages : 169
Book Description
Knopp's engaging book presents an introduction to modular functions in number theory by concentrating on two modular functions, $\eta(\tau)$ and $\vartheta(\tau)$, and their applications to two number-theoretic functions, $p(n)$ and $r_s(n)$. They are well chosen, as at the heart of these particular applications to the treatment of these specific number-theoretic functions lies the general theory of automorphic functions, a theory of far-reaching significance with important connections to a great many fields of mathematics. The book is essentially self-contained, assuming only a good first-year course in analysis. The excellent exposition presents the beautiful interplay between modular forms and number theory, making the book an excellent introduction to analytic number theory for a beginning graduate student. Table of Contents: The Modular Group and Certain Subgroups: 1. The modular group; 2. A fundamental region for $\Gamma(1)$; 3. Some subgroups of $\Gamma(1)$; 4. Fundamental regions of subgroups. Modular Functions and Forms: 1. Multiplier systems; 2. Parabolic points; 3 Fourier expansions; 4. Definitions of modular function and modular form; 5. Several important theorems.The Modular Forms $\eta(\tau)$ and $\vartheta(\tau)$: 1. The function $\eta(\tau)$; 2. Several famous identities; 3. Transformation formulas for $\eta(\tau)$; 4. The function $\vartheta(\tau)$. The Multiplier Systems $\upsilon_{\eta}$ and $\upsilon_{\vartheta}$: 1. Preliminaries; 2. Proof of theorem 2; 3. Proof of theorem 3. Sums of Squares: 1. Statement of results; 2. Lipschitz summation formula; 3. The function $\psi_s(\tau)$; 4. The expansion of $\psi_s(\tau)$ at $-1$; 5. Proofs of theorems 2 and 3; 6. Related results. The Order of Magnitude of $p(n)$: 1. A simple inequality for $p(n)$; 2. The asymptotic formula for $p(n)$; 3. Proof of theorem 2. The Ramanujan Congruences for $p(n)$: 1. Statement of the congruences; 2. The functions $\Phi_{p, r}(\tau)$ and $h_p(\tau)$; 3. The function $s_{p, r}(\tau)$; 4. The congruence for $p(n)$ Modulo 11; 5. Newton's formula; 6. The modular equation for the prime 5; 7. The modular equation for the prime 7. Proof of the Ramanujan Congruences for Powers of 5 and 7: 1. Preliminaries; 2. Application of the modular equation; 3. A digression: The Ramanujan identities for powers of the prime 5; 4. Completion of the proof for powers of 5; 5.Start of the proof for powers of 7; 6. A second digression: The Ramanujan identities for powers of the prime 7; 7. Completion of the proof for powers of 7. Index. (CHEL/337.H
Modular Functions in Analytic Number Theory
Author: Marvin Isadore Knopp
Publisher: American Mathematical Soc.
ISBN: 0821844881
Category : Mathematics
Languages : en
Pages : 169
Book Description
Knopp's engaging book presents an introduction to modular functions in number theory by concentrating on two modular functions, $\eta(\tau)$ and $\vartheta(\tau)$, and their applications to two number-theoretic functions, $p(n)$ and $r_s(n)$. They are well chosen, as at the heart of these particular applications to the treatment of these specific number-theoretic functions lies the general theory of automorphic functions, a theory of far-reaching significance with important connections to a great many fields of mathematics. The book is essentially self-contained, assuming only a good first-year course in analysis. The excellent exposition presents the beautiful interplay between modular forms and number theory, making the book an excellent introduction to analytic number theory for a beginning graduate student. Table of Contents: The Modular Group and Certain Subgroups: 1. The modular group; 2. A fundamental region for $\Gamma(1)$; 3. Some subgroups of $\Gamma(1)$; 4. Fundamental regions of subgroups. Modular Functions and Forms: 1. Multiplier systems; 2. Parabolic points; 3 Fourier expansions; 4. Definitions of modular function and modular form; 5. Several important theorems.The Modular Forms $\eta(\tau)$ and $\vartheta(\tau)$: 1. The function $\eta(\tau)$; 2. Several famous identities; 3. Transformation formulas for $\eta(\tau)$; 4. The function $\vartheta(\tau)$. The Multiplier Systems $\upsilon_{\eta}$ and $\upsilon_{\vartheta}$: 1. Preliminaries; 2. Proof of theorem 2; 3. Proof of theorem 3. Sums of Squares: 1. Statement of results; 2. Lipschitz summation formula; 3. The function $\psi_s(\tau)$; 4. The expansion of $\psi_s(\tau)$ at $-1$; 5. Proofs of theorems 2 and 3; 6. Related results. The Order of Magnitude of $p(n)$: 1. A simple inequality for $p(n)$; 2. The asymptotic formula for $p(n)$; 3. Proof of theorem 2. The Ramanujan Congruences for $p(n)$: 1. Statement of the congruences; 2. The functions $\Phi_{p, r}(\tau)$ and $h_p(\tau)$; 3. The function $s_{p, r}(\tau)$; 4. The congruence for $p(n)$ Modulo 11; 5. Newton's formula; 6. The modular equation for the prime 5; 7. The modular equation for the prime 7. Proof of the Ramanujan Congruences for Powers of 5 and 7: 1. Preliminaries; 2. Application of the modular equation; 3. A digression: The Ramanujan identities for powers of the prime 5; 4. Completion of the proof for powers of 5; 5.Start of the proof for powers of 7; 6. A second digression: The Ramanujan identities for powers of the prime 7; 7. Completion of the proof for powers of 7. Index. (CHEL/337.H
Publisher: American Mathematical Soc.
ISBN: 0821844881
Category : Mathematics
Languages : en
Pages : 169
Book Description
Knopp's engaging book presents an introduction to modular functions in number theory by concentrating on two modular functions, $\eta(\tau)$ and $\vartheta(\tau)$, and their applications to two number-theoretic functions, $p(n)$ and $r_s(n)$. They are well chosen, as at the heart of these particular applications to the treatment of these specific number-theoretic functions lies the general theory of automorphic functions, a theory of far-reaching significance with important connections to a great many fields of mathematics. The book is essentially self-contained, assuming only a good first-year course in analysis. The excellent exposition presents the beautiful interplay between modular forms and number theory, making the book an excellent introduction to analytic number theory for a beginning graduate student. Table of Contents: The Modular Group and Certain Subgroups: 1. The modular group; 2. A fundamental region for $\Gamma(1)$; 3. Some subgroups of $\Gamma(1)$; 4. Fundamental regions of subgroups. Modular Functions and Forms: 1. Multiplier systems; 2. Parabolic points; 3 Fourier expansions; 4. Definitions of modular function and modular form; 5. Several important theorems.The Modular Forms $\eta(\tau)$ and $\vartheta(\tau)$: 1. The function $\eta(\tau)$; 2. Several famous identities; 3. Transformation formulas for $\eta(\tau)$; 4. The function $\vartheta(\tau)$. The Multiplier Systems $\upsilon_{\eta}$ and $\upsilon_{\vartheta}$: 1. Preliminaries; 2. Proof of theorem 2; 3. Proof of theorem 3. Sums of Squares: 1. Statement of results; 2. Lipschitz summation formula; 3. The function $\psi_s(\tau)$; 4. The expansion of $\psi_s(\tau)$ at $-1$; 5. Proofs of theorems 2 and 3; 6. Related results. The Order of Magnitude of $p(n)$: 1. A simple inequality for $p(n)$; 2. The asymptotic formula for $p(n)$; 3. Proof of theorem 2. The Ramanujan Congruences for $p(n)$: 1. Statement of the congruences; 2. The functions $\Phi_{p, r}(\tau)$ and $h_p(\tau)$; 3. The function $s_{p, r}(\tau)$; 4. The congruence for $p(n)$ Modulo 11; 5. Newton's formula; 6. The modular equation for the prime 5; 7. The modular equation for the prime 7. Proof of the Ramanujan Congruences for Powers of 5 and 7: 1. Preliminaries; 2. Application of the modular equation; 3. A digression: The Ramanujan identities for powers of the prime 5; 4. Completion of the proof for powers of 5; 5.Start of the proof for powers of 7; 6. A second digression: The Ramanujan identities for powers of the prime 7; 7. Completion of the proof for powers of 7. Index. (CHEL/337.H
Modular Functions and Dirichlet Series in Number Theory
Author: Tom M. Apostol
Publisher: Springer Science & Business Media
ISBN: 1461209994
Category : Mathematics
Languages : en
Pages : 218
Book Description
A new edition of a classical treatment of elliptic and modular functions with some of their number-theoretic applications, this text offers an updated bibliography and an alternative treatment of the transformation formula for the Dedekind eta function. It covers many topics, such as Hecke’s theory of entire forms with multiplicative Fourier coefficients, and the last chapter recounts Bohr’s theory of equivalence of general Dirichlet series.
Publisher: Springer Science & Business Media
ISBN: 1461209994
Category : Mathematics
Languages : en
Pages : 218
Book Description
A new edition of a classical treatment of elliptic and modular functions with some of their number-theoretic applications, this text offers an updated bibliography and an alternative treatment of the transformation formula for the Dedekind eta function. It covers many topics, such as Hecke’s theory of entire forms with multiplicative Fourier coefficients, and the last chapter recounts Bohr’s theory of equivalence of general Dirichlet series.
Analytic Number Theory, Modular Forms and q-Hypergeometric Series
Author: George E. Andrews
Publisher: Springer
ISBN: 3319683764
Category : Mathematics
Languages : en
Pages : 764
Book Description
Gathered from the 2016 Gainesville Number Theory Conference honoring Krishna Alladi on his 60th birthday, these proceedings present recent research in number theory. Extensive and detailed, this volume features 40 articles by leading researchers on topics in analytic number theory, probabilistic number theory, irrationality and transcendence, Diophantine analysis, partitions, basic hypergeometric series, and modular forms. Readers will also find detailed discussions of several aspects of the path-breaking work of Srinivasa Ramanujan and its influence on current research. Many of the papers were motivated by Alladi's own research on partitions and q-series as well as his earlier work in number theory. Alladi is well known for his contributions in number theory and mathematics. His research interests include combinatorics, discrete mathematics, sieve methods, probabilistic and analytic number theory, Diophantine approximations, partitions and q-series identities. Graduate students and researchers will find this volume a valuable resource on new developments in various aspects of number theory.
Publisher: Springer
ISBN: 3319683764
Category : Mathematics
Languages : en
Pages : 764
Book Description
Gathered from the 2016 Gainesville Number Theory Conference honoring Krishna Alladi on his 60th birthday, these proceedings present recent research in number theory. Extensive and detailed, this volume features 40 articles by leading researchers on topics in analytic number theory, probabilistic number theory, irrationality and transcendence, Diophantine analysis, partitions, basic hypergeometric series, and modular forms. Readers will also find detailed discussions of several aspects of the path-breaking work of Srinivasa Ramanujan and its influence on current research. Many of the papers were motivated by Alladi's own research on partitions and q-series as well as his earlier work in number theory. Alladi is well known for his contributions in number theory and mathematics. His research interests include combinatorics, discrete mathematics, sieve methods, probabilistic and analytic number theory, Diophantine approximations, partitions and q-series identities. Graduate students and researchers will find this volume a valuable resource on new developments in various aspects of number theory.
Some Applications of Modular Forms
Author: Peter Sarnak
Publisher: Cambridge University Press
ISBN: 1316582442
Category : Mathematics
Languages : en
Pages : 124
Book Description
The theory of modular forms and especially the so-called 'Ramanujan Conjectures' have been applied to resolve problems in combinatorics, computer science, analysis and number theory. This tract, based on the Wittemore Lectures given at Yale University, is concerned with describing some of these applications. In order to keep the presentation reasonably self-contained, Professor Sarnak begins by developing the necessary background material in modular forms. He then considers the solution of three problems: the Ruziewicz problem concerning finitely additive rotationally invariant measures on the sphere; the explicit construction of highly connected but sparse graphs: 'expander graphs' and 'Ramanujan graphs'; and the Linnik problem concerning the distribution of integers that represent a given large integer as a sum of three squares. These applications are carried out in detail. The book therefore should be accessible to a wide audience of graduate students and researchers in mathematics and computer science.
Publisher: Cambridge University Press
ISBN: 1316582442
Category : Mathematics
Languages : en
Pages : 124
Book Description
The theory of modular forms and especially the so-called 'Ramanujan Conjectures' have been applied to resolve problems in combinatorics, computer science, analysis and number theory. This tract, based on the Wittemore Lectures given at Yale University, is concerned with describing some of these applications. In order to keep the presentation reasonably self-contained, Professor Sarnak begins by developing the necessary background material in modular forms. He then considers the solution of three problems: the Ruziewicz problem concerning finitely additive rotationally invariant measures on the sphere; the explicit construction of highly connected but sparse graphs: 'expander graphs' and 'Ramanujan graphs'; and the Linnik problem concerning the distribution of integers that represent a given large integer as a sum of three squares. These applications are carried out in detail. The book therefore should be accessible to a wide audience of graduate students and researchers in mathematics and computer science.
Introduction to Analytic Number Theory
Author: Tom M. Apostol
Publisher: Springer Science & Business Media
ISBN: 1475755791
Category : Mathematics
Languages : en
Pages : 352
Book Description
"This book is the first volume of a two-volume textbook for undergraduates and is indeed the crystallization of a course offered by the author at the California Institute of Technology to undergraduates without any previous knowledge of number theory. For this reason, the book starts with the most elementary properties of the natural integers. Nevertheless, the text succeeds in presenting an enormous amount of material in little more than 300 pages."-—MATHEMATICAL REVIEWS
Publisher: Springer Science & Business Media
ISBN: 1475755791
Category : Mathematics
Languages : en
Pages : 352
Book Description
"This book is the first volume of a two-volume textbook for undergraduates and is indeed the crystallization of a course offered by the author at the California Institute of Technology to undergraduates without any previous knowledge of number theory. For this reason, the book starts with the most elementary properties of the natural integers. Nevertheless, the text succeeds in presenting an enormous amount of material in little more than 300 pages."-—MATHEMATICAL REVIEWS
Analytic Number Theory
Author: Henryk Iwaniec
Publisher: American Mathematical Soc.
ISBN: 1470467704
Category : Education
Languages : en
Pages : 615
Book Description
Analytic Number Theory distinguishes itself by the variety of tools it uses to establish results. One of the primary attractions of this theory is its vast diversity of concepts and methods. The main goals of this book are to show the scope of the theory, both in classical and modern directions, and to exhibit its wealth and prospects, beautiful theorems, and powerful techniques. The book is written with graduate students in mind, and the authors nicely balance clarity, completeness, and generality. The exercises in each section serve dual purposes, some intended to improve readers' understanding of the subject and others providing additional information. Formal prerequisites for the major part of the book do not go beyond calculus, complex analysis, integration, and Fourier series and integrals. In later chapters automorphic forms become important, with much of the necessary information about them included in two survey chapters.
Publisher: American Mathematical Soc.
ISBN: 1470467704
Category : Education
Languages : en
Pages : 615
Book Description
Analytic Number Theory distinguishes itself by the variety of tools it uses to establish results. One of the primary attractions of this theory is its vast diversity of concepts and methods. The main goals of this book are to show the scope of the theory, both in classical and modern directions, and to exhibit its wealth and prospects, beautiful theorems, and powerful techniques. The book is written with graduate students in mind, and the authors nicely balance clarity, completeness, and generality. The exercises in each section serve dual purposes, some intended to improve readers' understanding of the subject and others providing additional information. Formal prerequisites for the major part of the book do not go beyond calculus, complex analysis, integration, and Fourier series and integrals. In later chapters automorphic forms become important, with much of the necessary information about them included in two survey chapters.
Analytic Number Theory
Author: P. T. Bateman
Publisher: World Scientific
ISBN: 9789812560803
Category : Mathematics
Languages : en
Pages : 378
Book Description
This valuable book focuses on a collection of powerful methods of analysis that yield deep number-theoretical estimates. Particular attention is given to counting functions of prime numbers and multiplicative arithmetic functions. Both real variable (?elementary?) and complex variable (?analytic?) methods are employed. The reader is assumed to have knowledge of elementary number theory (abstract algebra will also do) and real and complex analysis. Specialized analytic techniques, including transform and Tauberian methods, are developed as needed.Comments and corrigenda for the book are found at http: //www.math.uiuc.edu/ diamond/
Publisher: World Scientific
ISBN: 9789812560803
Category : Mathematics
Languages : en
Pages : 378
Book Description
This valuable book focuses on a collection of powerful methods of analysis that yield deep number-theoretical estimates. Particular attention is given to counting functions of prime numbers and multiplicative arithmetic functions. Both real variable (?elementary?) and complex variable (?analytic?) methods are employed. The reader is assumed to have knowledge of elementary number theory (abstract algebra will also do) and real and complex analysis. Specialized analytic techniques, including transform and Tauberian methods, are developed as needed.Comments and corrigenda for the book are found at http: //www.math.uiuc.edu/ diamond/
Topics in Analytic Number Theory
Author: Hans Rademacher
Publisher: Springer Science & Business Media
ISBN: 3642806155
Category : Mathematics
Languages : en
Pages : 333
Book Description
At the time of Professor Rademacher's death early in 1969, there was available a complete manuscript of the present work. The editors had only to supply a few bibliographical references and to correct a few misprints and errors. No substantive changes were made in the manu script except in one or two places where references to additional material appeared; since this material was not found in Rademacher's papers, these references were deleted. The editors are grateful to Springer-Verlag for their helpfulness and courtesy. Rademacher started work on the present volume no later than 1944; he was still working on it at the inception of his final illness. It represents the parts of analytic number theory that were of greatest interest to him. The editors, his students, offer this work as homage to the memory of a great man to whom they, in common with all number theorists, owe a deep and lasting debt. E. Grosswald Temple University, Philadelphia, PA 19122, U.S.A. J. Lehner University of Pittsburgh, Pittsburgh, PA 15213 and National Bureau of Standards, Washington, DC 20234, U.S.A. M. Newman National Bureau of Standards, Washington, DC 20234, U.S.A. Contents I. Analytic tools Chapter 1. Bernoulli polynomials and Bernoulli numbers ....... . 1 1. The binomial coefficients ..................................... . 1 2. The Bernoulli polynomials .................................... . 4 3. Zeros of the Bernoulli polynomials ............................. . 7 4. The Bernoulli numbers ....................................... . 9 5. The von Staudt-Clausen theorem .............................. . 10 6. A multiplication formula for the Bernoulli polynomials ........... .
Publisher: Springer Science & Business Media
ISBN: 3642806155
Category : Mathematics
Languages : en
Pages : 333
Book Description
At the time of Professor Rademacher's death early in 1969, there was available a complete manuscript of the present work. The editors had only to supply a few bibliographical references and to correct a few misprints and errors. No substantive changes were made in the manu script except in one or two places where references to additional material appeared; since this material was not found in Rademacher's papers, these references were deleted. The editors are grateful to Springer-Verlag for their helpfulness and courtesy. Rademacher started work on the present volume no later than 1944; he was still working on it at the inception of his final illness. It represents the parts of analytic number theory that were of greatest interest to him. The editors, his students, offer this work as homage to the memory of a great man to whom they, in common with all number theorists, owe a deep and lasting debt. E. Grosswald Temple University, Philadelphia, PA 19122, U.S.A. J. Lehner University of Pittsburgh, Pittsburgh, PA 15213 and National Bureau of Standards, Washington, DC 20234, U.S.A. M. Newman National Bureau of Standards, Washington, DC 20234, U.S.A. Contents I. Analytic tools Chapter 1. Bernoulli polynomials and Bernoulli numbers ....... . 1 1. The binomial coefficients ..................................... . 1 2. The Bernoulli polynomials .................................... . 4 3. Zeros of the Bernoulli polynomials ............................. . 7 4. The Bernoulli numbers ....................................... . 9 5. The von Staudt-Clausen theorem .............................. . 10 6. A multiplication formula for the Bernoulli polynomials ........... .
The 1-2-3 of Modular Forms
Author: Jan Hendrik Bruinier
Publisher: Springer Science & Business Media
ISBN: 3540741194
Category : Mathematics
Languages : en
Pages : 273
Book Description
This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.
Publisher: Springer Science & Business Media
ISBN: 3540741194
Category : Mathematics
Languages : en
Pages : 273
Book Description
This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.
Advanced Analytic Number Theory: L-Functions
Author: Carlos J. Moreno
Publisher: American Mathematical Soc.
ISBN: 0821842668
Category : Mathematics
Languages : en
Pages : 313
Book Description
Since the pioneering work of Euler, Dirichlet, and Riemann, the analytic properties of L-functions have been used to study the distribution of prime numbers. With the advent of the Langlands Program, L-functions have assumed a greater role in the study of the interplay between Diophantine questions about primes and representation theoretic properties of Galois representations. This book provides a complete introduction to the most significant class of L-functions: the Artin-Hecke L-functions associated to finite-dimensional representations of Weil groups and to automorphic L-functions of principal type on the general linear group. In addition to establishing functional equations, growth estimates, and non-vanishing theorems, a thorough presentation of the explicit formulas of Riemann type in the context of Artin-Hecke and automorphic L-functions is also given. The survey is aimed at mathematicians and graduate students who want to learn about the modern analytic theory of L-functions and their applications in number theory and in the theory of automorphic representations. The requirements for a profitable study of this monograph are a knowledge of basic number theory and the rudiments of abstract harmonic analysis on locally compact abelian groups.
Publisher: American Mathematical Soc.
ISBN: 0821842668
Category : Mathematics
Languages : en
Pages : 313
Book Description
Since the pioneering work of Euler, Dirichlet, and Riemann, the analytic properties of L-functions have been used to study the distribution of prime numbers. With the advent of the Langlands Program, L-functions have assumed a greater role in the study of the interplay between Diophantine questions about primes and representation theoretic properties of Galois representations. This book provides a complete introduction to the most significant class of L-functions: the Artin-Hecke L-functions associated to finite-dimensional representations of Weil groups and to automorphic L-functions of principal type on the general linear group. In addition to establishing functional equations, growth estimates, and non-vanishing theorems, a thorough presentation of the explicit formulas of Riemann type in the context of Artin-Hecke and automorphic L-functions is also given. The survey is aimed at mathematicians and graduate students who want to learn about the modern analytic theory of L-functions and their applications in number theory and in the theory of automorphic representations. The requirements for a profitable study of this monograph are a knowledge of basic number theory and the rudiments of abstract harmonic analysis on locally compact abelian groups.