Author: Bernard Geurts
Publisher: R. T. Edwards
ISBN: 9781930217041
Category : Fluid dynamics
Languages : en
Pages : 0
Book Description
Geurts presents state-of-the-art analysis of turbulent flow simulation techniques and presents direct numerical simulation and large-eddy simulation. (Technology & Industrial Arts)
Modern Simulation Strategies for Turbulent Flow
Author: Bernard Geurts
Publisher: R. T. Edwards
ISBN: 9781930217041
Category : Fluid dynamics
Languages : en
Pages : 0
Book Description
Geurts presents state-of-the-art analysis of turbulent flow simulation techniques and presents direct numerical simulation and large-eddy simulation. (Technology & Industrial Arts)
Publisher: R. T. Edwards
ISBN: 9781930217041
Category : Fluid dynamics
Languages : en
Pages : 0
Book Description
Geurts presents state-of-the-art analysis of turbulent flow simulation techniques and presents direct numerical simulation and large-eddy simulation. (Technology & Industrial Arts)
Direct and Large-Eddy Simulation
Author: Bernard J. Geurts
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110532360
Category : Mathematics
Languages : en
Pages : 320
Book Description
This book presents a comprehensive overview of the mathematics and physics behind the simulation of turbulent flows and discusses in detail (i) the phenomenology of turbulence in fluid dynamics, (ii) the role of direct and large-eddy simulation in predicting these dynamics, (iii) the multiple considerations underpinning subgrid modelling, and, (iv) the issue of validation and reliability resulting from interacting modelling and numerical errors.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110532360
Category : Mathematics
Languages : en
Pages : 320
Book Description
This book presents a comprehensive overview of the mathematics and physics behind the simulation of turbulent flows and discusses in detail (i) the phenomenology of turbulence in fluid dynamics, (ii) the role of direct and large-eddy simulation in predicting these dynamics, (iii) the multiple considerations underpinning subgrid modelling, and, (iv) the issue of validation and reliability resulting from interacting modelling and numerical errors.
Modeling and Simulation of Turbulent Flows
Author: Roland Schiestel
Publisher: John Wiley & Sons
ISBN: 0470393467
Category : Science
Languages : en
Pages : 751
Book Description
This title provides the fundamental bases for developing turbulence models on rational grounds. The main different methods of approach are considered, ranging from statistical modelling at various degrees of complexity to numerical simulations of turbulence. Each of these various methods has its own specific performances and limitations, which appear to be complementary rather than competitive. After a discussion of the basic concepts, mathematical tools and methods for closure, the book considers second order closure models. Emphasis is placed upon this approach because it embodies potentials for clarifying numerous problems in turbulent shear flows. Simpler, generally older models are then presented as simplified versions of the more general second order models. The influence of extra physical parameters is also considered. Finally, the book concludes by examining large Eddy numerical simulations methods. Given the book’s comprehensive coverage, those involved in the theoretical or practical study of turbulence problems in fluids will find this a useful and informative read.
Publisher: John Wiley & Sons
ISBN: 0470393467
Category : Science
Languages : en
Pages : 751
Book Description
This title provides the fundamental bases for developing turbulence models on rational grounds. The main different methods of approach are considered, ranging from statistical modelling at various degrees of complexity to numerical simulations of turbulence. Each of these various methods has its own specific performances and limitations, which appear to be complementary rather than competitive. After a discussion of the basic concepts, mathematical tools and methods for closure, the book considers second order closure models. Emphasis is placed upon this approach because it embodies potentials for clarifying numerous problems in turbulent shear flows. Simpler, generally older models are then presented as simplified versions of the more general second order models. The influence of extra physical parameters is also considered. Finally, the book concludes by examining large Eddy numerical simulations methods. Given the book’s comprehensive coverage, those involved in the theoretical or practical study of turbulence problems in fluids will find this a useful and informative read.
Mathematics of Large Eddy Simulation of Turbulent Flows
Author: Luigi Carlo Berselli
Publisher: Springer Science & Business Media
ISBN: 9783540263166
Category : Computers
Languages : en
Pages : 378
Book Description
The LES-method is rapidly developing in many practical applications in engineering The mathematical background is presented here for the first time in book form by one of the leaders in the field
Publisher: Springer Science & Business Media
ISBN: 9783540263166
Category : Computers
Languages : en
Pages : 378
Book Description
The LES-method is rapidly developing in many practical applications in engineering The mathematical background is presented here for the first time in book form by one of the leaders in the field
Turbulent Flow Computation
Author: D. Drikakis
Publisher: Springer Science & Business Media
ISBN: 0306484218
Category : Science
Languages : en
Pages : 390
Book Description
In various branches of fluid mechanics, our understanding is inhibited by the presence of turbulence. Although many experimental and theoretical studies have significantly helped to increase our physical understanding, a comp- hensive and predictive theory of turbulent flows has not yet been established. Therefore, the prediction of turbulent flow relies heavily on simulation stra- gies. The development of reliable methods for turbulent flow computation will have a significant impact on a variety of technological advancements. These range from aircraft and car design, to turbomachinery, combustors, and process engineering. Moreover, simulation approaches are important in materials - sign, prediction of biologically relevant flows, and also significantly contribute to the understanding of environmental processes including weather and climate forecasting. The material that is compiled in this book presents a coherent account of contemporary computational approaches for turbulent flows. It aims to p- vide the reader with information about the current state of the art as well as to stimulate directions for future research and development. The book puts part- ular emphasis on computational methods for incompressible and compressible turbulent flows as well as on methods for analysing and quantifying nume- cal errors in turbulent flow computations. In addition, it presents turbulence modelling approaches in the context of large eddy simulation, and unfolds the challenges in the field of simulations for multiphase flows and computational fluid dynamics (CFD) of engineering flows in complex geometries. Apart from reviewing main research developments, new material is also included in many of the chapters.
Publisher: Springer Science & Business Media
ISBN: 0306484218
Category : Science
Languages : en
Pages : 390
Book Description
In various branches of fluid mechanics, our understanding is inhibited by the presence of turbulence. Although many experimental and theoretical studies have significantly helped to increase our physical understanding, a comp- hensive and predictive theory of turbulent flows has not yet been established. Therefore, the prediction of turbulent flow relies heavily on simulation stra- gies. The development of reliable methods for turbulent flow computation will have a significant impact on a variety of technological advancements. These range from aircraft and car design, to turbomachinery, combustors, and process engineering. Moreover, simulation approaches are important in materials - sign, prediction of biologically relevant flows, and also significantly contribute to the understanding of environmental processes including weather and climate forecasting. The material that is compiled in this book presents a coherent account of contemporary computational approaches for turbulent flows. It aims to p- vide the reader with information about the current state of the art as well as to stimulate directions for future research and development. The book puts part- ular emphasis on computational methods for incompressible and compressible turbulent flows as well as on methods for analysing and quantifying nume- cal errors in turbulent flow computations. In addition, it presents turbulence modelling approaches in the context of large eddy simulation, and unfolds the challenges in the field of simulations for multiphase flows and computational fluid dynamics (CFD) of engineering flows in complex geometries. Apart from reviewing main research developments, new material is also included in many of the chapters.
Large Eddy Simulation for Incompressible Flows
Author: P. Sagaut
Publisher: Springer Science & Business Media
ISBN: 9783540263449
Category : Computers
Languages : en
Pages : 600
Book Description
First concise textbook on Large-Eddy Simulation, a very important method in scientific computing and engineering From the foreword to the third edition written by Charles Meneveau: "... this meticulously assembled and significantly enlarged description of the many aspects of LES will be a most welcome addition to the bookshelves of scientists and engineers in fluid mechanics, LES practitioners, and students of turbulence in general."
Publisher: Springer Science & Business Media
ISBN: 9783540263449
Category : Computers
Languages : en
Pages : 600
Book Description
First concise textbook on Large-Eddy Simulation, a very important method in scientific computing and engineering From the foreword to the third edition written by Charles Meneveau: "... this meticulously assembled and significantly enlarged description of the many aspects of LES will be a most welcome addition to the bookshelves of scientists and engineers in fluid mechanics, LES practitioners, and students of turbulence in general."
Advances in Hybrid RANS-LES Modelling
Author: Shia-Hui Peng
Publisher: Springer Science & Business Media
ISBN: 3540778152
Category : Technology & Engineering
Languages : en
Pages : 343
Book Description
Turbulence modelling has long been, and will remain, one of the most important t- ics in turbulence research, challenging scientists and engineers in the academic world and in the industrial society. Over the past decade, Detached Eddy Simulation (DES) and other hybrid RANS-LES methods have received increasing attention from the turbulence-research community, as well as from industrial CFD engineers. Indeed, as an engineering modelling approach, hybrid RANS-LES methods have acquired a remarkable profile in modelling turbulent flows of industrial interest in relation to, for example, transportation, energy production and the environment. The advantage exploited with hybrid RANS-LES modelling approaches, being - tentially more computationally efficient than LES and more accurate than (unsteady) RANS, has motivated numerous research and development activities. These activities, together with industrial applications, have been further facilitated over the recent years by the rapid development of modern computing resources. As a European initiative, the EU project DESider (Detached Eddy Simulation for Industrial Aerodynamics, 2004-2007), has been one of the earliest and most systematic international R&D effort with its focus on development, improvement and applications of a variety of existing and new hybrid RANS-LES modelling approaches, as well as on related numerical issues. In association with the DESider project, two subsequent international symposia on hybrid RANS-LES methods have been arranged in Stockholm (Sweden, 2005) and in Corfu (Greece, 2007), respectively. The present book is a result of the Second Symposium on Hybrid RANS-LES Methods, held in Corfu, Greece, 17-18 June 2007.
Publisher: Springer Science & Business Media
ISBN: 3540778152
Category : Technology & Engineering
Languages : en
Pages : 343
Book Description
Turbulence modelling has long been, and will remain, one of the most important t- ics in turbulence research, challenging scientists and engineers in the academic world and in the industrial society. Over the past decade, Detached Eddy Simulation (DES) and other hybrid RANS-LES methods have received increasing attention from the turbulence-research community, as well as from industrial CFD engineers. Indeed, as an engineering modelling approach, hybrid RANS-LES methods have acquired a remarkable profile in modelling turbulent flows of industrial interest in relation to, for example, transportation, energy production and the environment. The advantage exploited with hybrid RANS-LES modelling approaches, being - tentially more computationally efficient than LES and more accurate than (unsteady) RANS, has motivated numerous research and development activities. These activities, together with industrial applications, have been further facilitated over the recent years by the rapid development of modern computing resources. As a European initiative, the EU project DESider (Detached Eddy Simulation for Industrial Aerodynamics, 2004-2007), has been one of the earliest and most systematic international R&D effort with its focus on development, improvement and applications of a variety of existing and new hybrid RANS-LES modelling approaches, as well as on related numerical issues. In association with the DESider project, two subsequent international symposia on hybrid RANS-LES methods have been arranged in Stockholm (Sweden, 2005) and in Corfu (Greece, 2007), respectively. The present book is a result of the Second Symposium on Hybrid RANS-LES Methods, held in Corfu, Greece, 17-18 June 2007.
Computational Fluid Dynamics
Author: Jiyuan Tu
Publisher: Elsevier
ISBN: 0323939392
Category : Science
Languages : en
Pages : 498
Book Description
Computational Fluid Dynamics: A Practical Approach, Fourth Edition is an introduction to computational fluid dynamics (CFD) fundamentals and commercial CFD software to solve engineering problems. The book is designed for a wide variety of engineering students new to CFD, but is also ideal for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step-by-step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. This new edition has been updated throughout, with new content and improved figures, examples and problems. - Updated throughout, with new case studies, examples, references, and corrections according to readers' and reviewers' feedback - Delivers the latest developments in CFD including the high-order and reduced-order modeling approach, machine learning–accelerated CFD, full coverage of high-speed fluid dynamics, and the meshless approaches to provide a broader overview of the application areas where CFD can be used - Reorganized and rewritten to better meet the needs of CFD instructors and students - Online resources include all lecturing and guest lecturing PPTs, computer lab practicing with step-by-step and screenshot guidelines, assignment and course project details, answers for review questions in each chapter, a new bonus chapter featuring detailed case studies, and result discussion
Publisher: Elsevier
ISBN: 0323939392
Category : Science
Languages : en
Pages : 498
Book Description
Computational Fluid Dynamics: A Practical Approach, Fourth Edition is an introduction to computational fluid dynamics (CFD) fundamentals and commercial CFD software to solve engineering problems. The book is designed for a wide variety of engineering students new to CFD, but is also ideal for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step-by-step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. This new edition has been updated throughout, with new content and improved figures, examples and problems. - Updated throughout, with new case studies, examples, references, and corrections according to readers' and reviewers' feedback - Delivers the latest developments in CFD including the high-order and reduced-order modeling approach, machine learning–accelerated CFD, full coverage of high-speed fluid dynamics, and the meshless approaches to provide a broader overview of the application areas where CFD can be used - Reorganized and rewritten to better meet the needs of CFD instructors and students - Online resources include all lecturing and guest lecturing PPTs, computer lab practicing with step-by-step and screenshot guidelines, assignment and course project details, answers for review questions in each chapter, a new bonus chapter featuring detailed case studies, and result discussion
Closure Strategies for Turbulent and Transitional Flows
Author: Brian Edward Launder
Publisher: Cambridge University Press
ISBN: 9780521792080
Category : Mathematics
Languages : en
Pages : 774
Book Description
Publisher Description
Publisher: Cambridge University Press
ISBN: 9780521792080
Category : Mathematics
Languages : en
Pages : 774
Book Description
Publisher Description
Advances in LES of Complex Flows
Author: Rainer Friedrich
Publisher: Springer Science & Business Media
ISBN: 0306483831
Category : Technology & Engineering
Languages : en
Pages : 387
Book Description
The articles focus on new developments in the field of large-eddy simulation of complex flows and are related to the topics: modelling and analysis of subgrid scales, numerical issues in LES cartesian grids for complex geometries, curvilinear and non-structured grids for complex geometries. DES and RANS-LES coupling, aircraft wake vortices, combustion and magnetohydrodynamics. Progress has been made not only in understanding and modelling the dynamics of unresolved scales, but also in designing means that prevent the contamination of LES predictions by discretization errors. Progress is reported as well on the use of cartesian and curvilinear coordinates to compute flow in and around complex geometries and in the field of LES with unstructured grids. A chapter is dedicated to the detached-eddy simulation technique and its recent achievements and to the promising technique of coupling RANS and LES solutions in order to push the resolution-based Reynolds number limit of wall-resolving LES to higher values. Complexity due to physical mechanisms links the last two chapters. It is shown that LES constitutes the tool to analyse the physics of aircraft wake vortices during landing and takeoff. Its thorough understanding is a prerequisite for reliable predictions of the distance between consecutive landing airplanes. Subgrid combustion modelling for LES of single and two-phase reacting flows is demonstrated to have the potential to deal with finite-rate kinetics in high Reynolds number flows of full-scale gas turbine engines. Fluctuating magnetic fields are more reliably predicted by LES when tensor-diffusivity rather than gradient-diffusion models are used. An encouraging result in the context of turbulence control by magnetic fields.
Publisher: Springer Science & Business Media
ISBN: 0306483831
Category : Technology & Engineering
Languages : en
Pages : 387
Book Description
The articles focus on new developments in the field of large-eddy simulation of complex flows and are related to the topics: modelling and analysis of subgrid scales, numerical issues in LES cartesian grids for complex geometries, curvilinear and non-structured grids for complex geometries. DES and RANS-LES coupling, aircraft wake vortices, combustion and magnetohydrodynamics. Progress has been made not only in understanding and modelling the dynamics of unresolved scales, but also in designing means that prevent the contamination of LES predictions by discretization errors. Progress is reported as well on the use of cartesian and curvilinear coordinates to compute flow in and around complex geometries and in the field of LES with unstructured grids. A chapter is dedicated to the detached-eddy simulation technique and its recent achievements and to the promising technique of coupling RANS and LES solutions in order to push the resolution-based Reynolds number limit of wall-resolving LES to higher values. Complexity due to physical mechanisms links the last two chapters. It is shown that LES constitutes the tool to analyse the physics of aircraft wake vortices during landing and takeoff. Its thorough understanding is a prerequisite for reliable predictions of the distance between consecutive landing airplanes. Subgrid combustion modelling for LES of single and two-phase reacting flows is demonstrated to have the potential to deal with finite-rate kinetics in high Reynolds number flows of full-scale gas turbine engines. Fluctuating magnetic fields are more reliably predicted by LES when tensor-diffusivity rather than gradient-diffusion models are used. An encouraging result in the context of turbulence control by magnetic fields.