Modelling of turbulence-chemistry interactions with respect to the NOx formation in turbulent non-premixed flames PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Modelling of turbulence-chemistry interactions with respect to the NOx formation in turbulent non-premixed flames PDF full book. Access full book title Modelling of turbulence-chemistry interactions with respect to the NOx formation in turbulent non-premixed flames by Martin Schlatter. Download full books in PDF and EPUB format.

Modelling of turbulence-chemistry interactions with respect to the NOx formation in turbulent non-premixed flames

Modelling of turbulence-chemistry interactions with respect to the NOx formation in turbulent non-premixed flames PDF Author: Martin Schlatter
Publisher:
ISBN:
Category :
Languages : en
Pages : 134

Book Description


Modelling of turbulence-chemistry interactions with respect to the NOx formation in turbulent non-premixed flames

Modelling of turbulence-chemistry interactions with respect to the NOx formation in turbulent non-premixed flames PDF Author: Martin Schlatter
Publisher:
ISBN:
Category :
Languages : en
Pages : 134

Book Description


Modelling of Turbulence-chemistry Interactions with Respect to the NOx Formation in Turbulent Non-premixed Flames

Modelling of Turbulence-chemistry Interactions with Respect to the NOx Formation in Turbulent Non-premixed Flames PDF Author: Martin Schlatter (Ingenieur.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 134

Book Description


Turbulent Combustion Modeling

Turbulent Combustion Modeling PDF Author: Tarek Echekki
Publisher: Springer Science & Business Media
ISBN: 9400704127
Category : Technology & Engineering
Languages : en
Pages : 496

Book Description
Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.

Emission Modeling in Turbulent Premixed Flames

Emission Modeling in Turbulent Premixed Flames PDF Author: Hongtao Yang
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages :

Book Description
Turbulent lean premixed combustion now plays a predominant role in reducing emission of pollutants such as NOx. For turbulent premixed flames located in the thin-reaction-zones regime, small-scale eddies could penetrate into the preheat zone of the flames and enhance the mixing process. In this study, the effects of small-scale turbulence on emission (NOx and CO) formation in premixed flame fronts are investigated through the incorporation of turbulence induced diffusion in the preheat zone of one-dimensional premixed flames. One-dimensional methane/air premixed flames are simulated with the 53-species GRI-Mech 3.0 mechanism at both atmospheric and engine conditions with different turbulence intensities. It is found that the NO generated in flame fronts deceases with increasing intensity of small-scale turbulence and the effect is more profound at high pressures. At high pressures, the turbulence induced diffusion in the preheat zone can reduce the NOx formation in flame fronts by more than 40%. On the other hand, the CO mass fraction in flame fronts increases with increasing intensity of small-scale turbulence. In the cases considered, the CO mass fraction in the flame fronts can increase by more than 55%. In addition, a flamelet-based approach that accounts for the flame thickening effects has been formulated to simulate NOx and CO formation in turbulent lean premixed combustion. In this approach, the species NO and CO are transported and solved in a simulation with chemical source terms being pre-calculated from 1-D premixed flames with detailed chemical kinetics and turbulence induced diffusion. The NO source term can be quantified by its formation in flame fronts and its formation rate in post-flame region. The CO source term can be calculated through its mass fraction at flame fronts, its mass fraction in the post-flame region and an oxidation time scale. The effect of heat loss on NO formation has been studied by investigate the relation between post-flame NO formation rate and flame temperature. Meanwhile, the effect of turbulent-chemistry interaction on NO were studied. The flamelet-based emission model has been implemented into Fluent and 3-Dimensional simulations were conducted in a combustion rig.

Modeling and Simulation of Turbulent Combustion

Modeling and Simulation of Turbulent Combustion PDF Author: Santanu De
Publisher: Springer
ISBN: 9789811356285
Category : Science
Languages : en
Pages : 0

Book Description
This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.

Turbulence-Chemistry Models in Highly Strained Non-Premixed Flames

Turbulence-Chemistry Models in Highly Strained Non-Premixed Flames PDF Author: Sanjay Correa
Publisher:
ISBN:
Category :
Languages : en
Pages : 64

Book Description
To allow implementation of chemical kinetic schemes of arbitrary complexity in computational design codes for gas-turbine combustion, a new microstructural turbulent combustion model was developed. The fine structure of turbulent combustion was represented by PSR (Perfectly Stirred Reactor) theory. The theory is the intense-combustion analog of flamelet theory. Residence times in the PSR were related to the scalar dissipation, and turbulence-chemistry interactions were closed by using the probability distribution function for scalar dissipation in a turbulent flow. Calculations compared very favorably with Raman data on temperature and species from three turbulent bluff-body stabilized laboratory flames: (i) a non-premixed CO/H2/N2-air flame, (ii) a non-premixed CH4/H2-air flame, and (iii) a premixed CH4-air flame. With this success, the model was applied to two practical combustors: (iv) an axially-staged combustion system which produces about half the NOx of a conventional combustor while offering greater operability, and operates in an unusual regime of turbulence-chemistry interactions, and (v) a conventional aircraft engine combustor. In the latter case, a kinetic scheme with over 121 species and 996 elementary reactions was demonstrated. In both cases, the calculated results agreed well with temperature and species data. The physical model developed here was used directly in the industry-standard pressure-corrected mean Navier-Stokes/assumed-shape pdf/k-epsilon type of CFD code, which affords significant geometric flexibility and rapid convergence for gas-turbine combustor flowfields.

Modeling of NOx Formation in Turbulent Flames

Modeling of NOx Formation in Turbulent Flames PDF Author: Weizhen Zhang
Publisher:
ISBN:
Category :
Languages : en
Pages : 576

Book Description


Direct Numerical Simulation for Turbulent Reacting Flows

Direct Numerical Simulation for Turbulent Reacting Flows PDF Author: Thierry Baritaud
Publisher: Editions TECHNIP
ISBN: 9782710806981
Category : Science
Languages : en
Pages : 328

Book Description
Contents: Description of accurate boundary conditions for the simulation of reactive flows. Parallel direct numerical simulation of turbulent reactive flow. Flame-wall interaction and heat flux modelling in turbulent channel flow. A numerical study of laminar flame wall interaction with detailed chemistry: wall temperature effects. Modeling and simulation of turbulent flame kernel evolution. Experimental and theoretical analysis of flame surface density modelling for premixed turbulent combustion. Gradient and counter-gradient transport in turbulent premixed flames. Direct numerical simulation of turbulent flames with complex chemical kinetics. Effects of curvature and unsteadiness in diffusion flames. Implications for turbulent diffusion combustion. Numerical simulations of autoignition in turbulent mixing flows. Stabilization processes of diffusion flames. References.

Fundamentals of Turbulent and Multiphase Combustion

Fundamentals of Turbulent and Multiphase Combustion PDF Author: Kenneth Kuan-yun Kuo
Publisher: John Wiley & Sons
ISBN: 111809929X
Category : Science
Languages : en
Pages : 914

Book Description
Detailed coverage of advanced combustion topics from the author of Principles of combustion, Second Edition Turbulence, turbulent combustion, and multiphase reacting flows have become major research topics in recent decades due to their application across diverse fields, including energy, environment, propulsion, transportation, industrial safety, and nanotechnology. Most of the knowledge accumulated from this research has never been published in book form—until now. Fundamentals of Turbulent and Multiphase Combustion presents up-to-date, integrated coverage of the fundamentals of turbulence, combustion, and multiphase phenomena along with useful experimental techniques, including non-intrusive, laser-based measurement techniques, providing a firm background in both contemporary and classical approaches. Beginning with two full chapters on laminar premixed and non-premixed flames, this book takes a multiphase approach, beginning with more common topics and moving on to higher-level applications. In addition, Fundamentals of Turbulent and Multiphase Combustion: Addresses seven basic topical areas in combustion and multiphase flows, including laminar premixed and non-premixed flames, theory of turbulence, turbulent premixed and non-premixed flames, and multiphase flows Covers spray atomization and combustion, solid-propellant combustion, homogeneous propellants, nitramines, reacting boundary-layer flows, single energetic particle combustion, and granular bed combustion Provides experimental setups and results whenever appropriate Supported with a large number of examples and problems as well as a solutions manual, Fundamentals of Turbulent and Multiphase Combustion is an important resource for professional engineers and researchers as well as graduate students in mechanical, chemical, and aerospace engineering.

Turbulent Premixed Flames

Turbulent Premixed Flames PDF Author: Nedunchezhian Swaminathan
Publisher: Cambridge University Press
ISBN: 1139498584
Category : Technology & Engineering
Languages : en
Pages : 447

Book Description
A work on turbulent premixed combustion is important because of increased concern about the environmental impact of combustion and the search for new combustion concepts and technologies. An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts. Lean premixed flames have the potential to offer ultra-low emission levels, but they are notoriously susceptible to combustion oscillations. Thus, sophisticated control measures are inevitably required. The editors' intent is to set out the modeling aspects in the field of turbulent premixed combustion. Good progress has been made on this topic, and this cohesive volume contains contributions from international experts on various subtopics of the lean premixed flame problem.