Modeling the Effects of Climate Change on Streamflow and Stream Temperature in the South Fork of the Stillaguamish River

Modeling the Effects of Climate Change on Streamflow and Stream Temperature in the South Fork of the Stillaguamish River PDF Author: Katherine Mary Clarke
Publisher:
ISBN:
Category : Salmonidae
Languages : en
Pages : 132

Book Description
The Stillaguamish River in northwest Washington State is an important regional water resource for local agriculture, industry, and First Nations tribes and a critical habitat for several threatened and endangered salmonid species, including the Chinook salmon. The river is currently subject to a temperature total maximum daily load, so it is important to understand how projected climate change will affect future stream temperatures and thus salmon populations. Snowpack is the main contributor to spring and summer streamflow and helps to mitigate stream temperatures as air temperatures rise through the summer in the South Fork of the Stillaguamish River. I used gridded historical meteorological data to calibrate the physically-based Distributed Hydrology Soil Vegetation Model and River Basin Model and then applied downscaled, gridded projected climate data to predict how a changing climate will influence hydrology and stream temperature in the South Fork basin through the end of the 21st century.

Modeling the Effects of Climate Change Forecasts on Streamflow in the Nooksack River Basin

Modeling the Effects of Climate Change Forecasts on Streamflow in the Nooksack River Basin PDF Author: Susan E. Dickerson
Publisher:
ISBN:
Category : Climatic changes
Languages : en
Pages : 0

Book Description
The Nooksack River has its headwaters in the North Cascade Mountains and drains an approximately 2300 km2 watershed in northwestern Washington State. The timing and magnitude of streamflow in a high relief, snow-dominated drainage basin such as the Nooksack River basin is strongly influenced by temperature and precipitation. Forecasts of future climate made by general circulation models (GCMs) predict increases in temperature and variable changes to precipitation in western Washington, which will affect streamflow, snowpack, and glaciers in the Nooksack River basin. Anticipating the response of the river to climate change is crucial for water resources planning because municipalities, tribes, and industry depend on the river for water use and for fish habitat. I combined modeled climate forecasts and the Distributed-Hydrology-Soil-Vegetation Model (DHSVM) to simulate future changes to timing and magnitude of streamflow in the higher elevations of the Nooksack River, east of the confluence near Deming, Washington. The DHSVM is a physically based, spatially distributed hydrology model that simulates a water and energy balance at the pixel scale of a digital elevation model. I used recent meteorological and landcover data to calibrate and validate the DHSVM. Coarse-resolution GCM forecasts were downscaled to the Nooksack basin following the methods of previous regional studies (e.g., Palmer, 2007) for use as local-scale meteorological input to the calibrated DHSVM. Simulations of future streamflow and snowpack in the Nooksack River basin predict a range of magnitudes, which reflects the variable predictions of the climate change forecasts and local natural variability. Simulation results forecast increased winter flows, decreased summer flows, decreased snowpack, and a shift in timing of the spring melt peak and maximum snow water equivalent. Modeling results for future peak flow events indicate an increase in both the frequency and magnitudes of floods, but uncertainties are high for modeling the absolute magnitudes of peak flows. These results are consistent with previous regional studies which document that temperature-related effects on precipitation and melting are driving changes to snow-melt dominated basins (e.g., Hamlet et al., 2005; Mote et al., 2005; Mote et al., 2008; Adam et al., 2009).

Modeling the Effects of Forecasted Climate Change and Glacier Recession on Late Summer Streamflow in the Upper Nooksack River Basin

Modeling the Effects of Forecasted Climate Change and Glacier Recession on Late Summer Streamflow in the Upper Nooksack River Basin PDF Author: Ryan D. Murphy
Publisher:
ISBN:
Category : Glaciers
Languages : en
Pages : 0

Book Description
Like many watersheds in the North Cascades range of Washington State, USA, streamflow in the Nooksack River is strongly influenced by precipitation and snowmelt in the spring and glacial ice melt in the warmer summer months. With a maritime climate and high relief containing approximately 34km2 of glacial ice, the streamflow response in the Nooksack River basin is sensitive to increases in temperature. Climate projections from global climate models (GCMs) for the 21st Century indicate increases in temperature with variable changes to precipitation. The watershed is a valuable freshwater resource for regional municipalities, industry, and agriculture, and provides critical habitat for endangered salmon species. Thus, understanding the impacts of forecasted climate change is critical for water resources planning purposes. I apply publically available statistically derived 1/16 degree gridded surface climate data along with the Distributed Hydrology Soil Vegetation Model (DHSVM) with newly developed coupled dynamic glacier model to simulate hydrologic and glacial processes through the end of the 21st Century. Simulation results project median winter streamflows to more than double by 2075 due to more precipitation falling as rain rather than snow, and median summer flows to decrease by more than half with a general shift in peak snowmelt derived spring flows toward earlier in the spring. Glaciers are projected to retreat significantly with smaller glaciers disappearing entirely. Ice melt contribution to streamflow is likely to play an important role in sustaining summer baseflows in the Nooksack River. Glacier melt derived streamflow is projected to increase throughout the first half of the 21st century and decrease in the latter half after glacier ice volume decreases substantially.

Development of a Precipitation-Runoff Model to Simulate Unregulated Streamflow in the South Fork Flathead River Basin, Montana

Development of a Precipitation-Runoff Model to Simulate Unregulated Streamflow in the South Fork Flathead River Basin, Montana PDF Author: U.S. Department of the Interior
Publisher: CreateSpace
ISBN: 9781499617023
Category : Reference
Languages : en
Pages : 50

Book Description
This report documents the development of a precipitation-runoff model for the South Fork Flathead River Basin, Mont. The Precipitation-Runoff Modeling System model, developed in cooperation with the Bureau of Reclama-tion, can be used to simulate daily mean unregulated stream-flow upstream and downstream from Hungry Horse Reservoir for water-resources planning. Two input files are required to run the model. The time-series data file contains daily precipi-tation data and daily minimum and maximum air-temperature data from climate stations in and near the South Fork Flathead River Basin. The parameter file contains values of parameters that describe the basin topography, the flow network, the distribution of the precipitation and temperature data, and the hydrologic characteristics of the basin soils and vegetation.

Effect of Meteorological Variables on Temperature Changes in Flowing Streams

Effect of Meteorological Variables on Temperature Changes in Flowing Streams PDF Author: Robert W. Troxler
Publisher:
ISBN:
Category : Thermal pollution of rivers, lakes, etc
Languages : en
Pages : 96

Book Description


Development of a Precipitation-runoff Model to Simulate Unregulated Streamflow in the South Fork Flathead River Basin, Montana

Development of a Precipitation-runoff Model to Simulate Unregulated Streamflow in the South Fork Flathead River Basin, Montana PDF Author: Katherine J. Chase
Publisher:
ISBN:
Category : Streamflow
Languages : en
Pages : 38

Book Description
This report documents the development of a precipitation-runoff model for the South Fork Flathead River Basin, Mont. The Precipitation-Runoff Modeling System model, developed in cooperation with the Bureau of Reclamation, can be used to simulate daily mean unregulated streamflow upstream and downstream from Hungry Horse Reservoir for water-resources planning. Two input files are required to run the model. The timeseries data file contains daily precipitation data and daily minimum and maximum air-temperature data from climate stations in and near the South Fork Flathead River Basin. The parameter file contains values of parameters that describe the basin topography, the flow network, the distribution of the precipitation and temperature data, and the hydrologic characteristics of the basin soils and vegetation.

Hydrologic Modeling and Climate Change Study in the Upper Mississippi River Basin Using SWAT

Hydrologic Modeling and Climate Change Study in the Upper Mississippi River Basin Using SWAT PDF Author: Manoj Jha
Publisher:
ISBN:
Category :
Languages : en
Pages : 396

Book Description
This dissertation describes the modeling efforts on the Upper Mississippi River Basin (UMRB) using the Soil and Water Assessment Tool (SWAT) model. The main goal of this study is to apply the SWAT model to the UMRB to evaluate the model as a tool for agricultural policy analysis and climate change impact analysis. A sensitivity analysis using influence coefficient method was conducted for eight selected hydrologic input parameters to identify the most to the least sensitive parameters. Calibration and validation of SWAT were performed for the Maquoketa River Watershed for streamflow on annual and monthly basis. The model was then validated for the entire UMRB streamflow and evaluated for a climate change impact analysis. The results indicate that the UMRB hydrology is very sensitve to potential future climate changes. The impact of future climate change was then explored for the streamflow by using two 10-year scenario periods (1990 and 2040s) generated by introducing a regional climate model (RegCM2) to dynamically downscale global model (HadCM2) results. The combined GCM-RCM-SWAT model system produced an increase in future scenario climate precipitation of 21% with a resulting 50% increase in total water yield in the UMRB. Furthermore, evaluation of model-introduced uncertainties due to use of SWAT, GCM, and RCM models yielded the highest percentage bias (18%) for the GCM downscaling error. Building upon the above SWAT validation, a SWAT modeling framework was constructed for the entire UMRB, which incorporates more detailed input data and is designed to assess the effects of land use, climate, and soil conditions on streamflow and water quality. An application of SWAT is presented for the Iowa and Des Moines River watersheds within the modeling framework constructed for the UMRB. A scenario run where conservation tillage adoption increased to 100% found a small sediment reduction of 5.8% for Iowa River Watershed and 5.7% for Des Moines River Watershed. On per-acre basis, sediment reduction for Iowa and Des Moines River Watersheds was found to be 1.86 and 1.18 metric tons respectively. Furthermore an attempt to validate the model for the entire UMRB yielded strong annual results.

Modeling the Effects of Climate Change on Glaciers in the Upper North Saskatchewan River Basin

Modeling the Effects of Climate Change on Glaciers in the Upper North Saskatchewan River Basin PDF Author: Evan L. J. Booth
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Modeling Impacts of Climate Change and Agricultural Management on Watershed Outputs in Midwestern USA

Modeling Impacts of Climate Change and Agricultural Management on Watershed Outputs in Midwestern USA PDF Author: Awoke Dagnew Teshager
Publisher:
ISBN:
Category : Agricultural ecology
Languages : en
Pages : 246

Book Description
Applications of the SWAT model typically involve delineation of a watershed into subwatersheds/subbasins that are then further subdivided into hydrologic response units (HRUs) which are homogeneous areas of aggregated soil, landuse, and slope and are the smallest modeling units used within the tool. In a standard SWAT application, multiple potential HRUs (farm fields) in a subbasin are usually aggregated into a single HRU feature. In other words, the standard version of the model combines multiple potential HRUs (farm fields) with the same landuse/landcover (LULC), soil, and slope, but located in different places within a subbasin (spatially non-unique), and considers them as one HRU. In this study, ArcGIS pre-processing procedures were developed to spatially define a one-to-one match between farm fields and HRUs (spatially unique HRUs) within a subbasin prior to SWAT simulations to facilitate input processing, input/output mapping, and further analysis at the individual farm field level. Model input data such as LULC, soil, crop rotation and other management data were processed through these HRUs. The SWAT model was then calibrated/validated for the Raccoon River watershed in Iowa for 2002 to 2010 and the Big Creek River watershed in Illinois for 2000 to 2003. SWAT was able to replicate annual, monthly and daily streamflow, as well as sediment, nitrate and mineral phosphorous within recommended accuracy in most cases. The one-to-one match between farm fields and HRUs created and used in this study is a first step in performing LULC change, climate change impact, and other analyses in a more spatially explicit manner. The calibrated and validated SWAT model was then used to assess agricultural scenario and climate change impacts on watershed water quantity, quality, and crop yields. Modeling impacts of agricultural scenarios and climate change on surface water quantity and quality provides useful information for planning effective water, environmental, and land use policies. Despite the significant impacts of agriculture on water quantity and quality, limited literature exists modeling the combined impacts of agricultural scenarios and climate change on crop yields and watershed hydrology. Here, SWAT, was used to model the combined impacts of five agricultural scenarios and three climate scenarios downscaled using eight climate models. These scenarios were implemented in a well calibrated SWAT model for the Raccoon River watershed (RRW), IA. We run the scenarios for the historical baseline, early-century, mid-century, and late-century periods. Results indicate that historical and more corn intensive agricultural scenarios with higher CO2 emissions consistently result in more water in the streams and greater water quality problems, especially late in the 21st century. Planting more switchgrass, on the other hand, results in less water in the streams and water quality improvements relative to the baseline. For all given agricultural landscapes simulated, all flow, sediment and nutrient outputs increase from early-to-late century periods for the RCP4.5 and RCP8.5 climate scenarios. We also find that corn and switchgrass yields are negatively impacted under RCP4.5 and RCP8.5 scenarios in the mid and late 21st century. Finally, various agricultural best management practice (BMP) scenarios were evaluated for their efficiency in alleviating watershed water quality problems. The vast majority of the literature on efficiency assessment of BMPs in alleviating water quality problems base their scenarios analysis on identifying subbasin level simulation results. In the this study, we used spatially explicit HRUs, defined using ArcGIS-based pre-processing methodology, to identify Nitrate (NO3) and Total Suspended Solids (TSS) hotspots at the HRU/field level, and evaluate the efficiency of selected BMPs in a large watershed, RRW, using the SWAT model. Accordingly, analysis of fourteen management scenarios were performed based on systematic combinations of five agricultural BMPs (fertilizer/manure management, changing cropland to perennial grass, vegetative filter strips, cover crops and shallower tile drainage systems) aimed to reduce NO3 and TSS yields from targeted hotspot areas in the watershed at field level. Moreover, implications of climate change on management practices, and impacts of management practices on water availability and crop yield and total production were assessed. Results indicated that either implementation of multiple BMPs or conversion of an extensive area into perennial grass may be required to sufficiently reduce nitrate loads to meet the drinking water standard. Moreover, climate change may undermine the effectiveness of management practices, especially late in the 21 st century. The targeted approach used in this study resulted in slight decreases in watershed average crop yields, hence the reduction in total crop production is mainly due to conversion of croplands to perennial grass.

Modeling Hydrologic Responses to Forest Management and Climate Change in Contrasting Watersheds in the Southeastern United States

Modeling Hydrologic Responses to Forest Management and Climate Change in Contrasting Watersheds in the Southeastern United States PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Hydrologic pathways and processes vary greatly from the coastal plain to the mountainous upland across the southeastern United States due to large physiographic and climatic gradients. The coastal plain is generally a groundwater dominated system with a shallow water table, while the mountainous upland is hillslope controlled system. It was hypothesized that these two different regions have different hydrologic responses to forest management and climate change due to different conditions: topography, climate, soil, and vegetation. The hydrologic impacts of climate change and forest management practices are complex and nonlinear, and a model is an advanced tool for addressing such tasks. The objectives of this study were: 1) to evaluate the applicability of a physically-based, distributed hydrologic modeling system - MIKE SHE/MIKE 11 - in the southeastern United States; and 2) to use the MIKE SHE/MIKE 11 modeling system to examine the hydrologic processes and responses to forest management practices and climate change on the coastal plain and the mountainous upland in the southeastern United States. Four experimental watersheds, three wetlands on the coastal plain and one Appalachian mountainous upland, were selected. The model was first evaluated to determine if it could sufficiently describe the hydrological processes in these diverse watersheds in two contrasting regions. Next, the model was applied to simulate the hydrologic impacts of forest management and climate change at the four study sites, four simulation scenarios per site. These included the base line, clearcut, 2 & deg;C temperature increase, and 10% precipitation decrease scenarios. Water table level and streamflow amount were two responses used to evaluate the forest management and climate change impacts. This study indicated that forest management and climate change would have potential impacts on the wetland water table, especially during dry periods. The absolute magnitudes of streamflow reduction w.