Modeling of Chemical Mechanical Polishing at Multiple Scales PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Modeling of Chemical Mechanical Polishing at Multiple Scales PDF full book. Access full book title Modeling of Chemical Mechanical Polishing at Multiple Scales by Guanghui Fu. Download full books in PDF and EPUB format.

Modeling of Chemical Mechanical Polishing at Multiple Scales

Modeling of Chemical Mechanical Polishing at Multiple Scales PDF Author: Guanghui Fu
Publisher:
ISBN:
Category :
Languages : en
Pages : 258

Book Description
Chemical Mechanical Polishing (CMP) has grown rapidly during the past decade as part of mainstream processing method in submicron integrated circuit manufacturing because of its global or near-global planarization ability. However, CMP process is influenced by many factors and is poorly understood. It makes process control and optimization very difficult. This study focuses on the modeling and simulation to facilitate better understanding and better control of the CMP process. The thesis outlines the modeling of CMP process in three scales: particle scale for material removal mechanism, wafer scale for within wafer nonuniformity issues and feature scale for dishing and erosion in metal CMP. At the particle scale, material removal mechanism is assumed to be due to local plastic deformation of wafer surface material. A mechanistic material removal model is derived that delineates the influence of abrasive (shape, size and concentration), pad (rigidity) and process parameters (pressure and relative velocity) on the material removal rate (MRR). Wafer scale model is based on the solution of indentation of elastic half space by a rigid frictionless polynomial punch. The load-displacement relationship is also derived and the conditions for unbonded or bonded contact are obtained from the boundary condition at punch edge. The corresponding viscoelastic solution is obtained through Laplace transform and elastic-viscoelastic analogy. The elastic solution is used to explain the edge effect. Viscoelastic solution is used to explain MRR decay for unconditioned pad. The relationships among wafer-pad interface pressure, wafer shape and wafer loading condition are also investigated. Feature scale model is based on Preston's relationship for material removal and constant downforce. It shows dishing is governed by polishing conditions (overpolishing, pressure, velocity), slurry (selectivity), pad characteristics (pad stiffness and bending ability), as well as wafer surface feature topography (pattern density, linewidth and pitch). This model is also valid for step height reduction when the same surface material is polished. Due to process complexity and coupling of various parameters, more fundamental research needs to be carried out and carefully designed experiments need to be done to verify the models. Recommendations for future research work is presented at the end.

Modeling of Chemical Mechanical Polishing at Multiple Scales

Modeling of Chemical Mechanical Polishing at Multiple Scales PDF Author: Guanghui Fu
Publisher:
ISBN:
Category :
Languages : en
Pages : 258

Book Description
Chemical Mechanical Polishing (CMP) has grown rapidly during the past decade as part of mainstream processing method in submicron integrated circuit manufacturing because of its global or near-global planarization ability. However, CMP process is influenced by many factors and is poorly understood. It makes process control and optimization very difficult. This study focuses on the modeling and simulation to facilitate better understanding and better control of the CMP process. The thesis outlines the modeling of CMP process in three scales: particle scale for material removal mechanism, wafer scale for within wafer nonuniformity issues and feature scale for dishing and erosion in metal CMP. At the particle scale, material removal mechanism is assumed to be due to local plastic deformation of wafer surface material. A mechanistic material removal model is derived that delineates the influence of abrasive (shape, size and concentration), pad (rigidity) and process parameters (pressure and relative velocity) on the material removal rate (MRR). Wafer scale model is based on the solution of indentation of elastic half space by a rigid frictionless polynomial punch. The load-displacement relationship is also derived and the conditions for unbonded or bonded contact are obtained from the boundary condition at punch edge. The corresponding viscoelastic solution is obtained through Laplace transform and elastic-viscoelastic analogy. The elastic solution is used to explain the edge effect. Viscoelastic solution is used to explain MRR decay for unconditioned pad. The relationships among wafer-pad interface pressure, wafer shape and wafer loading condition are also investigated. Feature scale model is based on Preston's relationship for material removal and constant downforce. It shows dishing is governed by polishing conditions (overpolishing, pressure, velocity), slurry (selectivity), pad characteristics (pad stiffness and bending ability), as well as wafer surface feature topography (pattern density, linewidth and pitch). This model is also valid for step height reduction when the same surface material is polished. Due to process complexity and coupling of various parameters, more fundamental research needs to be carried out and carefully designed experiments need to be done to verify the models. Recommendations for future research work is presented at the end.

Great Saturday

Great Saturday PDF Author:
Publisher:
ISBN:
Category : Holy Saturday
Languages : en
Pages : 52

Book Description


Integrated Modeling of Chemical Mechanical Planarization for Sub-Micron IC Fabrication

Integrated Modeling of Chemical Mechanical Planarization for Sub-Micron IC Fabrication PDF Author: Jianfeng Luo
Publisher: Springer Science & Business Media
ISBN: 3662079283
Category : Science
Languages : en
Pages : 327

Book Description
Chemical mechanical planarization, or chemical mechanical polishing as it is simultaneously referred to, has emerged as one of the critical processes in semiconductor manufacturing and in the production of other related products and devices, MEMS for example. Since its introduction some 15+ years ago CMP, as it is commonly called, has moved steadily into new and challenging areas of semiconductor fabrication. Demands on it for consistent, efficient and cost-effective processing have been steady. This has continued in the face of steadily decreasing feature sizes, impressive increases in wafer size and a continuing array of new materials used in devices today. There are a number of excellent existing references and monographs on CMP in circulation and we defer to them for detailed background information. They are cited in the text. Our focus here is on the important area of process mod els which have not kept pace with the tremendous expansion of applications of CMP. Preston's equation is a valuable start but represents none of the subtleties of the process. Specifically, we refer to the development of models with sufficient detail to allow the evaluation and tradeoff of process inputs and parameters to assess impact on quality or quantity of production. We call that an "integrated model" and, more specifically, we include the important role of the mechanical elements of the process.

Advances in Chemical Mechanical Planarization (CMP)

Advances in Chemical Mechanical Planarization (CMP) PDF Author: Babu Suryadevara
Publisher: Woodhead Publishing
ISBN: 0128218193
Category : Technology & Engineering
Languages : en
Pages : 650

Book Description
Advances in Chemical Mechanical Planarization (CMP), Second Edition provides the latest information on a mainstream process that is critical for high-volume, high-yield semiconductor manufacturing, and even more so as device dimensions continue to shrink. The second edition includes the recent advances of CMP and its emerging materials, methods, and applications, including coverage of post-CMP cleaning challenges and tribology of CMP. This important book offers a systematic review of fundamentals and advances in the area. Part one covers CMP of dielectric and metal films, with chapters focusing on the use of current and emerging techniques and processes and on CMP of various materials, including ultra low-k materials and high-mobility channel materials, and ending with a chapter reviewing the environmental impacts of CMP processes. New content addressed includes CMP challenges with tungsten, cobalt, and ruthenium as interconnect and barrier films, consumables for ultralow topography and CMP for memory devices. Part two addresses consumables and process control for improved CMP and includes chapters on CMP pads, diamond disc pad conditioning, the use of FTIR spectroscopy for characterization of surface processes and approaches for defection characterization, mitigation, and reduction. Advances in Chemical Mechanical Planarization (CMP), Second Edition is an invaluable resource and key reference for materials scientists and engineers in academia and R&D. Reviews the most relevant techniques and processes for CMP of dielectric and metal films Includes chapters devoted to CMP for current and emerging materials Addresses consumables and process control for improved CMP, including post-CMP

Particle Scale Modeling of Material Removal and Surface Roughness in Chemical Mechanical Polishing

Particle Scale Modeling of Material Removal and Surface Roughness in Chemical Mechanical Polishing PDF Author: Suresh Babu Yeruva
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The predictions of the model show a reasonable agreement with the experimental data. The model is validated for oxide and metal CMP systems. The PERC II model not only predicts the overall removal rate, but also the surface roughness of the polished wafer in selected systems. The developed model can be used to optimize the current CMP systems and provide insights into future CMP endeavors.

Chemical Mechanical Planarization IV

Chemical Mechanical Planarization IV PDF Author: R. L. Opila
Publisher: The Electrochemical Society
ISBN: 9781566772938
Category : Technology & Engineering
Languages : en
Pages : 350

Book Description


Dispersive Transport Equations and Multiscale Models

Dispersive Transport Equations and Multiscale Models PDF Author: Ben Abdallah Naoufel
Publisher: Springer Science & Business Media
ISBN: 1441989358
Category : Mathematics
Languages : en
Pages : 297

Book Description
IMA Volumes 135: Transport in Transition Regimes and 136: Dispersive Transport Equations and Multiscale Models focus on the modeling of processes for which transport is one of the most complicated components. This includes processes that involve a wdie range of length scales over different spatio-temporal regions of the problem, ranging from the order of mean-free paths to many times this scale. Consequently, effective modeling techniques require different transport models in each region. The first issue is that of finding efficient simulations techniques, since a fully resolved kinetic simulation is often impractical. One therefore develops homogenization, stochastic, or moment based subgrid models. Another issue is to quantify the discrepancy between macroscopic models and the underlying kinetic description, especially when dispersive effects become macroscopic, for example due to quantum effects in semiconductors and superfluids. These two volumes address these questions in relation to a wide variety of application areas, such as semiconductors, plasmas, fluids, chemically reactive gases, etc.

Modeling of Chemical Mechanical Polishing for Dielectric Planarization

Modeling of Chemical Mechanical Polishing for Dielectric Planarization PDF Author: Dennis Okumu Ouma
Publisher:
ISBN:
Category :
Languages : en
Pages : 228

Book Description


Chip Scale Modeling of Chemical Mechanical Planarization (CMP) for Layout Dependent Variation

Chip Scale Modeling of Chemical Mechanical Planarization (CMP) for Layout Dependent Variation PDF Author: Jihong Choi
Publisher:
ISBN:
Category :
Languages : en
Pages : 442

Book Description


Chemical Mechanical Polishing in Silicon Processing

Chemical Mechanical Polishing in Silicon Processing PDF Author:
Publisher: Academic Press
ISBN: 0080864619
Category : Science
Languages : en
Pages : 325

Book Description
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The Willardson and Beer series, as it is widely known, has succeeded in producing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded. Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry.