Author: Jean-Raymond Abrial
Publisher: Cambridge University Press
ISBN: 0521895561
Category : Computers
Languages : en
Pages : 613
Book Description
A practical introduction to this model-based formal method, containing a broad range of illustrative examples.
Modeling in Event-B
Author: Jean-Raymond Abrial
Publisher: Cambridge University Press
ISBN: 0521895561
Category : Computers
Languages : en
Pages : 613
Book Description
A practical introduction to this model-based formal method, containing a broad range of illustrative examples.
Publisher: Cambridge University Press
ISBN: 0521895561
Category : Computers
Languages : en
Pages : 613
Book Description
A practical introduction to this model-based formal method, containing a broad range of illustrative examples.
Modeling and Control of Discrete-event Dynamic Systems
Author: Branislav Hrúz
Publisher: Springer Science & Business Media
ISBN: 1846288770
Category : Science
Languages : en
Pages : 342
Book Description
Discrete-event dynamic systems (DEDs) permeate our world. They are of great importance in modern manufacturing processes, transportation and various forms of computer and communications networking. This book begins with the mathematical basics required for the study of DEDs and moves on to present various tools used in their modeling and control. Industrial examples illustrate the concepts and methods discussed, making this book an invaluable aid for students embarking on further courses in control, manufacturing engineering or computer studies.
Publisher: Springer Science & Business Media
ISBN: 1846288770
Category : Science
Languages : en
Pages : 342
Book Description
Discrete-event dynamic systems (DEDs) permeate our world. They are of great importance in modern manufacturing processes, transportation and various forms of computer and communications networking. This book begins with the mathematical basics required for the study of DEDs and moves on to present various tools used in their modeling and control. Industrial examples illustrate the concepts and methods discussed, making this book an invaluable aid for students embarking on further courses in control, manufacturing engineering or computer studies.
Probability and Bayesian Modeling
Author: Jim Albert
Publisher: CRC Press
ISBN: 1351030132
Category : Mathematics
Languages : en
Pages : 553
Book Description
Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book. A complete solutions manual is available for instructors who adopt the book in the Additional Resources section.
Publisher: CRC Press
ISBN: 1351030132
Category : Mathematics
Languages : en
Pages : 553
Book Description
Probability and Bayesian Modeling is an introduction to probability and Bayesian thinking for undergraduate students with a calculus background. The first part of the book provides a broad view of probability including foundations, conditional probability, discrete and continuous distributions, and joint distributions. Statistical inference is presented completely from a Bayesian perspective. The text introduces inference and prediction for a single proportion and a single mean from Normal sampling. After fundamentals of Markov Chain Monte Carlo algorithms are introduced, Bayesian inference is described for hierarchical and regression models including logistic regression. The book presents several case studies motivated by some historical Bayesian studies and the authors’ research. This text reflects modern Bayesian statistical practice. Simulation is introduced in all the probability chapters and extensively used in the Bayesian material to simulate from the posterior and predictive distributions. One chapter describes the basic tenets of Metropolis and Gibbs sampling algorithms; however several chapters introduce the fundamentals of Bayesian inference for conjugate priors to deepen understanding. Strategies for constructing prior distributions are described in situations when one has substantial prior information and for cases where one has weak prior knowledge. One chapter introduces hierarchical Bayesian modeling as a practical way of combining data from different groups. There is an extensive discussion of Bayesian regression models including the construction of informative priors, inference about functions of the parameters of interest, prediction, and model selection. The text uses JAGS (Just Another Gibbs Sampler) as a general-purpose computational method for simulating from posterior distributions for a variety of Bayesian models. An R package ProbBayes is available containing all of the book datasets and special functions for illustrating concepts from the book. A complete solutions manual is available for instructors who adopt the book in the Additional Resources section.
Modeling Discrete Time-to-Event Data
Author: Gerhard Tutz
Publisher: Springer
ISBN: 3319281585
Category : Mathematics
Languages : en
Pages : 252
Book Description
This book focuses on statistical methods for the analysis of discrete failure times. Failure time analysis is one of the most important fields in statistical research, with applications affecting a wide range of disciplines, in particular, demography, econometrics, epidemiology and clinical research. Although there are a large variety of statistical methods for failure time analysis, many techniques are designed for failure times that are measured on a continuous scale. In empirical studies, however, failure times are often discrete, either because they have been measured in intervals (e.g., quarterly or yearly) or because they have been rounded or grouped. The book covers well-established methods like life-table analysis and discrete hazard regression models, but also introduces state-of-the art techniques for model evaluation, nonparametric estimation and variable selection. Throughout, the methods are illustrated by real life applications, and relationships to survival analysis in continuous time are explained. Each section includes a set of exercises on the respective topics. Various functions and tools for the analysis of discrete survival data are collected in the R package discSurv that accompanies the book.
Publisher: Springer
ISBN: 3319281585
Category : Mathematics
Languages : en
Pages : 252
Book Description
This book focuses on statistical methods for the analysis of discrete failure times. Failure time analysis is one of the most important fields in statistical research, with applications affecting a wide range of disciplines, in particular, demography, econometrics, epidemiology and clinical research. Although there are a large variety of statistical methods for failure time analysis, many techniques are designed for failure times that are measured on a continuous scale. In empirical studies, however, failure times are often discrete, either because they have been measured in intervals (e.g., quarterly or yearly) or because they have been rounded or grouped. The book covers well-established methods like life-table analysis and discrete hazard regression models, but also introduces state-of-the art techniques for model evaluation, nonparametric estimation and variable selection. Throughout, the methods are illustrated by real life applications, and relationships to survival analysis in continuous time are explained. Each section includes a set of exercises on the respective topics. Various functions and tools for the analysis of discrete survival data are collected in the R package discSurv that accompanies the book.
Theory of Modeling and Simulation
Author: Bernard P. Zeigler
Publisher: Academic Press
ISBN: 0128134070
Category : Mathematics
Languages : en
Pages : 694
Book Description
Theory of Modeling and Simulation: Discrete Event & Iterative System Computational Foundations, Third Edition, continues the legacy of this authoritative and complete theoretical work. It is ideal for graduate and PhD students and working engineers interested in posing and solving problems using the tools of logico-mathematical modeling and computer simulation. Continuing its emphasis on the integration of discrete event and continuous modeling approaches, the work focuses light on DEVS and its potential to support the co-existence and interoperation of multiple formalisms in model components. New sections in this updated edition include discussions on important new extensions to theory, including chapter-length coverage of iterative system specification and DEVS and their fundamental importance, closure under coupling for iteratively specified systems, existence, uniqueness, non-deterministic conditions, and temporal progressiveness (legitimacy). - Presents a 40% revised and expanded new edition of this classic book with many important post-2000 extensions to core theory - Provides a streamlined introduction to Discrete Event System Specification (DEVS) formalism for modeling and simulation - Packages all the "need-to-know" information on DEVS formalism in one place - Expanded to include an online ancillary package, including numerous examples of theory and implementation in DEVS-based software, student solutions and instructors manual
Publisher: Academic Press
ISBN: 0128134070
Category : Mathematics
Languages : en
Pages : 694
Book Description
Theory of Modeling and Simulation: Discrete Event & Iterative System Computational Foundations, Third Edition, continues the legacy of this authoritative and complete theoretical work. It is ideal for graduate and PhD students and working engineers interested in posing and solving problems using the tools of logico-mathematical modeling and computer simulation. Continuing its emphasis on the integration of discrete event and continuous modeling approaches, the work focuses light on DEVS and its potential to support the co-existence and interoperation of multiple formalisms in model components. New sections in this updated edition include discussions on important new extensions to theory, including chapter-length coverage of iterative system specification and DEVS and their fundamental importance, closure under coupling for iteratively specified systems, existence, uniqueness, non-deterministic conditions, and temporal progressiveness (legitimacy). - Presents a 40% revised and expanded new edition of this classic book with many important post-2000 extensions to core theory - Provides a streamlined introduction to Discrete Event System Specification (DEVS) formalism for modeling and simulation - Packages all the "need-to-know" information on DEVS formalism in one place - Expanded to include an online ancillary package, including numerous examples of theory and implementation in DEVS-based software, student solutions and instructors manual
The B-Book
Author: J. R. Abrial
Publisher: Cambridge University Press
ISBN: 9780521021753
Category : Computers
Languages : en
Pages : 816
Book Description
The B method is a means for specifying, designing and coding software systems. The long-awaited B Book is the standard reference for everything concerning this method. It contains the mathematical basis on which it is founded, the precise definitions of the notations used, and a large number of examples illustrating its use in practice. J.-R. Abrial, the inventor of B, has written the book in such a way that it can be used for self-study or for reference. It is in four parts, the first dealing with the mathematical foundations, including a systematic construction of predicate logic and set theory, and the definition of the various mathematical structures that are needed to formalize software systems; the author places special emphasis on the notion of proof. The second part contains a presentation of the Generalized Substitution Language and of the Abstract Machine Notation, which are both used to specify software systems; the author gives examples to show how large specifications can be constructed systematically. The next part introduces the two basic programming features of sequencing and loop, with examples showing how to construct small algorithms. The last part covers the very important notion of refinement. It shows how to construct large software systems by means of layered architectures of modules. It culminates with the presentation of several examples of complete development with a special emphasis on the methodological approach. Finally, appendices give summaries of all the logical and mathematical definitions, and of all the rules and proof obligations. With the appearance of The B Book, formal methods practitioners, computer scientists, and systems developers at last will have access to the definitive account of what will become one of the standard approaches to the construction of software systems.
Publisher: Cambridge University Press
ISBN: 9780521021753
Category : Computers
Languages : en
Pages : 816
Book Description
The B method is a means for specifying, designing and coding software systems. The long-awaited B Book is the standard reference for everything concerning this method. It contains the mathematical basis on which it is founded, the precise definitions of the notations used, and a large number of examples illustrating its use in practice. J.-R. Abrial, the inventor of B, has written the book in such a way that it can be used for self-study or for reference. It is in four parts, the first dealing with the mathematical foundations, including a systematic construction of predicate logic and set theory, and the definition of the various mathematical structures that are needed to formalize software systems; the author places special emphasis on the notion of proof. The second part contains a presentation of the Generalized Substitution Language and of the Abstract Machine Notation, which are both used to specify software systems; the author gives examples to show how large specifications can be constructed systematically. The next part introduces the two basic programming features of sequencing and loop, with examples showing how to construct small algorithms. The last part covers the very important notion of refinement. It shows how to construct large software systems by means of layered architectures of modules. It culminates with the presentation of several examples of complete development with a special emphasis on the methodological approach. Finally, appendices give summaries of all the logical and mathematical definitions, and of all the rules and proof obligations. With the appearance of The B Book, formal methods practitioners, computer scientists, and systems developers at last will have access to the definitive account of what will become one of the standard approaches to the construction of software systems.
Stochastic Discrete Event Systems
Author: Armin Zimmermann
Publisher: Springer Science & Business Media
ISBN: 3540741739
Category : Computers
Languages : en
Pages : 393
Book Description
Stochastic discrete-event systems (SDES) capture the randomness in choices due to activity delays and the probabilities of decisions. This book delivers a comprehensive overview on modeling with a quantitative evaluation of SDES. It presents an abstract model class for SDES as a pivotal unifying result and details important model classes. The book also includes nontrivial examples to explain real-world applications of SDES.
Publisher: Springer Science & Business Media
ISBN: 3540741739
Category : Computers
Languages : en
Pages : 393
Book Description
Stochastic discrete-event systems (SDES) capture the randomness in choices due to activity delays and the probabilities of decisions. This book delivers a comprehensive overview on modeling with a quantitative evaluation of SDES. It presents an abstract model class for SDES as a pivotal unifying result and details important model classes. The book also includes nontrivial examples to explain real-world applications of SDES.
Modeling and Simulation of Discrete Event Systems
Author: Byoung Kyu Choi
Publisher: John Wiley & Sons
ISBN: 1118732855
Category : Technology & Engineering
Languages : en
Pages : 427
Book Description
Computer modeling and simulation (M&S) allows engineers to study and analyze complex systems. Discrete-event system (DES)-M&S is used in modern management, industrial engineering, computer science, and the military. As computer speeds and memory capacity increase, so DES-M&S tools become more powerful and more widely used in solving real-life problems. Based on over 20 years of evolution within a classroom environment, as well as on decades-long experience in developing simulation-based solutions for high-tech industries, Modeling and Simulation of Discrete-Event Systems is the only book on DES-M&S in which all the major DES modeling formalisms – activity-based, process-oriented, state-based, and event-based – are covered in a unified manner: A well-defined procedure for building a formal model in the form of event graph, ACD, or state graph Diverse types of modeling templates and examples that can be used as building blocks for a complex, real-life model A systematic, easy-to-follow procedure combined with sample C# codes for developing simulators in various modeling formalisms Simple tutorials as well as sample model files for using popular off-the-shelf simulators such as SIGMA®, ACE®, and Arena® Up-to-date research results as well as research issues and directions in DES-M&S Modeling and Simulation of Discrete-Event Systems is an ideal textbook for undergraduate and graduate students of simulation/industrial engineering and computer science, as well as for simulation practitioners and researchers.
Publisher: John Wiley & Sons
ISBN: 1118732855
Category : Technology & Engineering
Languages : en
Pages : 427
Book Description
Computer modeling and simulation (M&S) allows engineers to study and analyze complex systems. Discrete-event system (DES)-M&S is used in modern management, industrial engineering, computer science, and the military. As computer speeds and memory capacity increase, so DES-M&S tools become more powerful and more widely used in solving real-life problems. Based on over 20 years of evolution within a classroom environment, as well as on decades-long experience in developing simulation-based solutions for high-tech industries, Modeling and Simulation of Discrete-Event Systems is the only book on DES-M&S in which all the major DES modeling formalisms – activity-based, process-oriented, state-based, and event-based – are covered in a unified manner: A well-defined procedure for building a formal model in the form of event graph, ACD, or state graph Diverse types of modeling templates and examples that can be used as building blocks for a complex, real-life model A systematic, easy-to-follow procedure combined with sample C# codes for developing simulators in various modeling formalisms Simple tutorials as well as sample model files for using popular off-the-shelf simulators such as SIGMA®, ACE®, and Arena® Up-to-date research results as well as research issues and directions in DES-M&S Modeling and Simulation of Discrete-Event Systems is an ideal textbook for undergraduate and graduate students of simulation/industrial engineering and computer science, as well as for simulation practitioners and researchers.
An Introduction to Stochastic Modeling
Author: Howard M. Taylor
Publisher: Academic Press
ISBN: 1483269272
Category : Mathematics
Languages : en
Pages : 410
Book Description
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
Publisher: Academic Press
ISBN: 1483269272
Category : Mathematics
Languages : en
Pages : 410
Book Description
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.
Simulation Modeling and Arena
Author: Manuel D. Rossetti
Publisher: John Wiley & Sons
ISBN: 111885814X
Category : Mathematics
Languages : en
Pages : 746
Book Description
Emphasizes a hands-on approach to learning statistical analysis and model building through the use of comprehensive examples, problems sets, and software applications With a unique blend of theory and applications, Simulation Modeling and Arena®, Second Edition integrates coverage of statistical analysis and model building to emphasize the importance of both topics in simulation. Featuring introductory coverage on how simulation works and why it matters, the Second Edition expands coverage on static simulation and the applications of spreadsheets to perform simulation. The new edition also introduces the use of the open source statistical package, R, for both performing statistical testing and fitting distributions. In addition, the models are presented in a clear and precise pseudo-code form, which aids in understanding and model communication. Simulation Modeling and Arena, Second Edition also features: Updated coverage of necessary statistical modeling concepts such as confidence interval construction, hypothesis testing, and parameter estimation Additional examples of the simulation clock within discrete event simulation modeling involving the mechanics of time advancement by hand simulation A guide to the Arena Run Controller, which features a debugging scenario New homework problems that cover a wider range of engineering applications in transportation, logistics, healthcare, and computer science A related website with an Instructor’s Solutions Manual, PowerPoint® slides, test bank questions, and data sets for each chapter Simulation Modeling and Arena, Second Edition is an ideal textbook for upper-undergraduate and graduate courses in modeling and simulation within statistics, mathematics, industrial and civil engineering, construction management, business, computer science, and other departments where simulation is practiced. The book is also an excellent reference for professionals interested in mathematical modeling, simulation, and Arena.
Publisher: John Wiley & Sons
ISBN: 111885814X
Category : Mathematics
Languages : en
Pages : 746
Book Description
Emphasizes a hands-on approach to learning statistical analysis and model building through the use of comprehensive examples, problems sets, and software applications With a unique blend of theory and applications, Simulation Modeling and Arena®, Second Edition integrates coverage of statistical analysis and model building to emphasize the importance of both topics in simulation. Featuring introductory coverage on how simulation works and why it matters, the Second Edition expands coverage on static simulation and the applications of spreadsheets to perform simulation. The new edition also introduces the use of the open source statistical package, R, for both performing statistical testing and fitting distributions. In addition, the models are presented in a clear and precise pseudo-code form, which aids in understanding and model communication. Simulation Modeling and Arena, Second Edition also features: Updated coverage of necessary statistical modeling concepts such as confidence interval construction, hypothesis testing, and parameter estimation Additional examples of the simulation clock within discrete event simulation modeling involving the mechanics of time advancement by hand simulation A guide to the Arena Run Controller, which features a debugging scenario New homework problems that cover a wider range of engineering applications in transportation, logistics, healthcare, and computer science A related website with an Instructor’s Solutions Manual, PowerPoint® slides, test bank questions, and data sets for each chapter Simulation Modeling and Arena, Second Edition is an ideal textbook for upper-undergraduate and graduate courses in modeling and simulation within statistics, mathematics, industrial and civil engineering, construction management, business, computer science, and other departments where simulation is practiced. The book is also an excellent reference for professionals interested in mathematical modeling, simulation, and Arena.