Modeling and Analysis of Compositional Data PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Modeling and Analysis of Compositional Data PDF full book. Access full book title Modeling and Analysis of Compositional Data by Vera Pawlowsky-Glahn. Download full books in PDF and EPUB format.

Modeling and Analysis of Compositional Data

Modeling and Analysis of Compositional Data PDF Author: Vera Pawlowsky-Glahn
Publisher: John Wiley & Sons
ISBN: 1118443063
Category : Mathematics
Languages : en
Pages : 274

Book Description
Modeling and Analysis of Compositional Data presents a practical and comprehensive introduction to the analysis of compositional data along with numerous examples to illustrate both theory and application of each method. Based upon short courses delivered by the authors, it provides a complete and current compendium of fundamental to advanced methodologies along with exercises at the end of each chapter to improve understanding, as well as data and a solutions manual which is available on an accompanying website. Complementing Pawlowsky-Glahn’s earlier collective text that provides an overview of the state-of-the-art in this field, Modeling and Analysis of Compositional Data fills a gap in the literature for a much-needed manual for teaching, self learning or consulting.

Modeling and Analysis of Compositional Data

Modeling and Analysis of Compositional Data PDF Author: Vera Pawlowsky-Glahn
Publisher: John Wiley & Sons
ISBN: 1118443063
Category : Mathematics
Languages : en
Pages : 274

Book Description
Modeling and Analysis of Compositional Data presents a practical and comprehensive introduction to the analysis of compositional data along with numerous examples to illustrate both theory and application of each method. Based upon short courses delivered by the authors, it provides a complete and current compendium of fundamental to advanced methodologies along with exercises at the end of each chapter to improve understanding, as well as data and a solutions manual which is available on an accompanying website. Complementing Pawlowsky-Glahn’s earlier collective text that provides an overview of the state-of-the-art in this field, Modeling and Analysis of Compositional Data fills a gap in the literature for a much-needed manual for teaching, self learning or consulting.

Applied Compositional Data Analysis

Applied Compositional Data Analysis PDF Author: Peter Filzmoser
Publisher: Springer
ISBN: 3319964224
Category : Mathematics
Languages : en
Pages : 288

Book Description
This book presents the statistical analysis of compositional data using the log-ratio approach. It includes a wide range of classical and robust statistical methods adapted for compositional data analysis, such as supervised and unsupervised methods like PCA, correlation analysis, classification and regression. In addition, it considers special data structures like high-dimensional compositions and compositional tables. The methodology introduced is also frequently compared to methods which ignore the specific nature of compositional data. It focuses on practical aspects of compositional data analysis rather than on detailed theoretical derivations, thus issues like graphical visualization and preprocessing (treatment of missing values, zeros, outliers and similar artifacts) form an important part of the book. Since it is primarily intended for researchers and students from applied fields like geochemistry, chemometrics, biology and natural sciences, economics, and social sciences, all the proposed methods are accompanied by worked-out examples in R using the package robCompositions.

Analyzing Compositional Data with R

Analyzing Compositional Data with R PDF Author: K. Gerald van den Boogaart
Publisher: Springer Science & Business Media
ISBN: 3642368093
Category : Mathematics
Languages : en
Pages : 269

Book Description
This book presents the statistical analysis of compositional data sets, i.e., data in percentages, proportions, concentrations, etc. The subject is covered from its grounding principles to the practical use in descriptive exploratory analysis, robust linear models and advanced multivariate statistical methods, including zeros and missing values, and paying special attention to data visualization and model display issues. Many illustrated examples and code chunks guide the reader into their modeling and interpretation. And, though the book primarily serves as a reference guide for the R package “compositions,” it is also a general introductory text on Compositional Data Analysis. Awareness of their special characteristics spread in the Geosciences in the early sixties, but a strategy for properly dealing with them was not available until the works of Aitchison in the eighties. Since then, research has expanded our understanding of their theoretical principles and the potentials and limitations of their interpretation. This is the first comprehensive textbook addressing these issues, as well as their practical implications with regard to software. The book is intended for scientists interested in statistically analyzing their compositional data. The subject enjoys relatively broad awareness in the geosciences and environmental sciences, but the spectrum of recent applications also covers areas like medicine, official statistics, and economics. Readers should be familiar with basic univariate and multivariate statistics. Knowledge of R is recommended but not required, as the book is self-contained.

Compositional Data Analysis

Compositional Data Analysis PDF Author: Vera Pawlowsky-Glahn
Publisher: John Wiley & Sons
ISBN: 0470711353
Category : Mathematics
Languages : en
Pages : 405

Book Description
It is difficult to imagine that the statistical analysis of compositional data has been a major issue of concern for more than 100 years. It is even more difficult to realize that so many statisticians and users of statistics are unaware of the particular problems affecting compositional data, as well as their solutions. The issue of ``spurious correlation'', as the situation was phrased by Karl Pearson back in 1897, affects all data that measures parts of some whole, such as percentages, proportions, ppm and ppb. Such measurements are present in all fields of science, ranging from geology, biology, environmental sciences, forensic sciences, medicine and hydrology. This book presents the history and development of compositional data analysis along with Aitchison's log-ratio approach. Compositional Data Analysis describes the state of the art both in theoretical fields as well as applications in the different fields of science. Key Features: Reflects the state-of-the-art in compositional data analysis. Gives an overview of the historical development of compositional data analysis, as well as basic concepts and procedures. Looks at advances in algebra and calculus on the simplex. Presents applications in different fields of science, including, genomics, ecology, biology, geochemistry, planetology, chemistry and economics. Explores connections to correspondence analysis and the Dirichlet distribution. Presents a summary of three available software packages for compositional data analysis. Supported by an accompanying website featuring R code. Applied scientists working on compositional data analysis in any field of science, both in academia and professionals will benefit from this book, along with graduate students in any field of science working with compositional data.

Handbook of Mathematical Geosciences

Handbook of Mathematical Geosciences PDF Author: B.S. Daya Sagar
Publisher: Springer
ISBN: 3319789996
Category : Science
Languages : en
Pages : 911

Book Description
This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences.

Compositional Data Analysis in Practice

Compositional Data Analysis in Practice PDF Author: Michael Greenacre
Publisher: CRC Press
ISBN: 042984901X
Category : Business & Economics
Languages : en
Pages : 117

Book Description
Compositional data are quantitative descriptions of the parts of some whole, conveying exclusively relative information. Examples are found in various fields, including geology, medicine, chemistry, agriculture, economics, social science, etc. This concise book presents a very applied introduction to compositional data analysis, focussing on the use of R for analysis. It includes lots of real examples, code snippets, and colour figures, to illustrate the methods.

Compositional Data Analysis

Compositional Data Analysis PDF Author: Josep Antoni Martín-Fernández
Publisher: Springer
ISBN: 3319448110
Category : Mathematics
Languages : en
Pages : 211

Book Description
The authoritative contributions gathered in this volume reflect the state of the art in compositional data analysis (CoDa). The respective chapters cover all aspects of CoDa, ranging from mathematical theory, statistical methods and techniques to its broad range of applications in geochemistry, the life sciences and other disciplines. The selected and peer-reviewed papers were originally presented at the 6th International Workshop on Compositional Data Analysis, CoDaWork 2015, held in L’Escala (Girona), Spain. Compositional data is defined as vectors of positive components and constant sum, and, more generally, all those vectors representing parts of a whole which only carry relative information. Examples of compositional data can be found in many different fields such as geology, chemistry, economics, medicine, ecology and sociology. As most of the classical statistical techniques are incoherent on compositions, in the 1980s John Aitchison proposed the log-ratio approach to CoDa. This became the foundation of modern CoDa, which is now based on a specific geometric structure for the simplex, an appropriate representation of the sample space of compositional data. The International Workshops on Compositional Data Analysis offer a vital discussion forum for researchers and practitioners concerned with the statistical treatment and modelling of compositional data or other constrained data sets and the interpretation of models and their applications. The goal of the workshops is to summarize and share recent developments, and to identify important lines of future research.

Geostatistics for Compositional Data with R

Geostatistics for Compositional Data with R PDF Author: Raimon Tolosana-Delgado
Publisher: Springer Nature
ISBN: 303082568X
Category : Mathematics
Languages : en
Pages : 275

Book Description
This book provides a guided approach to the geostatistical modelling of compositional spatial data. These data are data in proportions, percentages or concentrations distributed in space which exhibit spatial correlation. The book can be divided into four blocks. The first block sets the framework and provides some background on compositional data analysis. Block two introduces compositional exploratory tools for both non-spatial and spatial aspects. Block three covers all necessary facets of multivariate spatial prediction for compositional data: variogram modelling, cokriging and validation. Finally, block four details strategies for simulation of compositional data, including transformations to multivariate normality, Gaussian cosimulation, multipoint simulation of compositional data, and common postprocessing techniques, valid for both Gaussian and multipoint methods. All methods are illustrated via applications to two types of data sets: one a large-scale geochemical survey, comprised of a full suite of geochemical variables, and the other from a mining context, where only the elements of greatest importance are considered. R codes are included for all aspects of the methodology, encapsulated in the R package "gmGeostats", available in CRAN.

Compositional Data Analysis in the Geosciences

Compositional Data Analysis in the Geosciences PDF Author: Antonella Buccianti
Publisher: Geological Society of London
ISBN: 9781862392052
Category : Mathematics
Languages : en
Pages : 232

Book Description
Since Karl Pearson wrote his paper on spurious correlation in 1897, a lot has been said about the statistical analysis of compositional data, mainly by geologists such as Felix Chayes. The solution appeared in the 1980s, when John Aitchison proposed to use Iogratios. Since then, the approach has seen a great expansion, mainly building on the idea of the `natural geometry' of the sample space. Statistics is expected to give sense to our perception of the natural scale of the data, and this is made possible for compositional data using Iogratios. This publication will be a milestone in this process.

Composing Model-Based Analysis Tools

Composing Model-Based Analysis Tools PDF Author: Robert Heinrich
Publisher: Springer Nature
ISBN: 3030819159
Category : Computers
Languages : en
Pages : 311

Book Description
This book presents joint works of members of the software engineering and formal methods communities with representatives from industry, with the goal of establishing the foundations for a common understanding of the needs for more flexibility in model-driven engineering. It is based on the Dagstuhl Seminar 19481 „Composing Model-Based Analysis Tools“, which was held November 24 to 29, 2019, at Schloss Dagstuhl, Germany, where current challenges, their background and concepts to address them were discussed. The book is structured in two parts, and organized around five fundamental core aspects of the subject: (1) the composition of languages, models and analyses; (2) the integration and orchestration of analysis tools; (3) the continual analysis of models; (4) the exploitation of results; and (5) the way to handle uncertainty in model-based developments. After a chapter on foundations and common terminology and a chapter on challenges in the field, one chapter is devoted to each of the above five core aspects in the first part of the book. These core chapters are accompanied by additional case studies in the second part of the book, in which specific tools and experiences are presented in more detail to illustrate the concepts and ideas previously introduced. The book mainly targets researchers in the fields of software engineering and formal methods as well as software engineers from industry with basic familiarity with quality properties, model-driven engineering and analysis tools. From reading the book, researchers will receive an overview of the state-of-the-art and current challenges, research directions, and recent concepts, while practitioners will be interested to learn about concrete tools and practical applications in the context of case studies.