Derivatives Analytics with Python PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Derivatives Analytics with Python PDF full book. Access full book title Derivatives Analytics with Python by Yves Hilpisch. Download full books in PDF and EPUB format.

Derivatives Analytics with Python

Derivatives Analytics with Python PDF Author: Yves Hilpisch
Publisher: John Wiley & Sons
ISBN: 1119037999
Category : Business & Economics
Languages : en
Pages : 390

Book Description
Supercharge options analytics and hedging using the power of Python Derivatives Analytics with Python shows you how to implement market-consistent valuation and hedging approaches using advanced financial models, efficient numerical techniques, and the powerful capabilities of the Python programming language. This unique guide offers detailed explanations of all theory, methods, and processes, giving you the background and tools necessary to value stock index options from a sound foundation. You'll find and use self-contained Python scripts and modules and learn how to apply Python to advanced data and derivatives analytics as you benefit from the 5,000+ lines of code that are provided to help you reproduce the results and graphics presented. Coverage includes market data analysis, risk-neutral valuation, Monte Carlo simulation, model calibration, valuation, and dynamic hedging, with models that exhibit stochastic volatility, jump components, stochastic short rates, and more. The companion website features all code and IPython Notebooks for immediate execution and automation. Python is gaining ground in the derivatives analytics space, allowing institutions to quickly and efficiently deliver portfolio, trading, and risk management results. This book is the finance professional's guide to exploiting Python's capabilities for efficient and performing derivatives analytics. Reproduce major stylized facts of equity and options markets yourself Apply Fourier transform techniques and advanced Monte Carlo pricing Calibrate advanced option pricing models to market data Integrate advanced models and numeric methods to dynamically hedge options Recent developments in the Python ecosystem enable analysts to implement analytics tasks as performing as with C or C++, but using only about one-tenth of the code or even less. Derivatives Analytics with Python — Data Analysis, Models, Simulation, Calibration and Hedging shows you what you need to know to supercharge your derivatives and risk analytics efforts.

Derivatives Analytics with Python

Derivatives Analytics with Python PDF Author: Yves Hilpisch
Publisher: John Wiley & Sons
ISBN: 1119037999
Category : Business & Economics
Languages : en
Pages : 390

Book Description
Supercharge options analytics and hedging using the power of Python Derivatives Analytics with Python shows you how to implement market-consistent valuation and hedging approaches using advanced financial models, efficient numerical techniques, and the powerful capabilities of the Python programming language. This unique guide offers detailed explanations of all theory, methods, and processes, giving you the background and tools necessary to value stock index options from a sound foundation. You'll find and use self-contained Python scripts and modules and learn how to apply Python to advanced data and derivatives analytics as you benefit from the 5,000+ lines of code that are provided to help you reproduce the results and graphics presented. Coverage includes market data analysis, risk-neutral valuation, Monte Carlo simulation, model calibration, valuation, and dynamic hedging, with models that exhibit stochastic volatility, jump components, stochastic short rates, and more. The companion website features all code and IPython Notebooks for immediate execution and automation. Python is gaining ground in the derivatives analytics space, allowing institutions to quickly and efficiently deliver portfolio, trading, and risk management results. This book is the finance professional's guide to exploiting Python's capabilities for efficient and performing derivatives analytics. Reproduce major stylized facts of equity and options markets yourself Apply Fourier transform techniques and advanced Monte Carlo pricing Calibrate advanced option pricing models to market data Integrate advanced models and numeric methods to dynamically hedge options Recent developments in the Python ecosystem enable analysts to implement analytics tasks as performing as with C or C++, but using only about one-tenth of the code or even less. Derivatives Analytics with Python — Data Analysis, Models, Simulation, Calibration and Hedging shows you what you need to know to supercharge your derivatives and risk analytics efforts.

Understanding and Managing Model Risk

Understanding and Managing Model Risk PDF Author: Massimo Morini
Publisher: John Wiley & Sons
ISBN: 0470977612
Category : Business & Economics
Languages : en
Pages : 452

Book Description
A guide to the validation and risk management of quantitative models used for pricing and hedging Whereas the majority of quantitative finance books focus on mathematics and risk management books focus on regulatory aspects, this book addresses the elements missed by this literature--the risks of the models themselves. This book starts from regulatory issues, but translates them into practical suggestions to reduce the likelihood of model losses, basing model risk and validation on market experience and on a wide range of real-world examples, with a high level of detail and precise operative indications.

The SABR/LIBOR Market Model

The SABR/LIBOR Market Model PDF Author: Riccardo Rebonato
Publisher: John Wiley & Sons
ISBN: 1119995639
Category : Business & Economics
Languages : en
Pages : 308

Book Description
This book presents a major innovation in the interest rate space. It explains a financially motivated extension of the LIBOR Market model which accurately reproduces the prices for plain vanilla hedging instruments (swaptions and caplets) of all strikes and maturities produced by the SABR model. The authors show how to accurately recover the whole of the SABR smile surface using their extension of the LIBOR market model. This is not just a new model, this is a new way of option pricing that takes into account the need to calibrate as accurately as possible to the plain vanilla reference hedging instruments and the need to obtain prices and hedges in reasonable time whilst reproducing a realistic future evolution of the smile surface. It removes the hard choice between accuracy and time because the framework that the authors provide reproduces today's market prices of plain vanilla options almost exactly and simultaneously gives a reasonable future evolution for the smile surface. The authors take the SABR model as the starting point for their extension of the LMM because it is a good model for European options. The problem, however with SABR is that it treats each European option in isolation and the processes for the various underlyings (forward and swap rates) do not talk to each other so it isn't obvious how to relate these processes into the dynamics of the whole yield curve. With this new model, the authors bring the dynamics of the various forward rates and stochastic volatilities under a single umbrella. To ensure the absence of arbitrage they derive drift adjustments to be applied to both the forward rates and their volatilities. When this is completed, complex derivatives that depend on the joint realisation of all relevant forward rates can now be priced. Contents THE THEORETICAL SET-UP The Libor Market model The SABR Model The LMM-SABR Model IMPLEMENTATION AND CALIBRATION Calibrating the LMM-SABR model to Market Caplet prices Calibrating the LMM/SABR model to Market Swaption Prices Calibrating the Correlation Structure EMPIRICAL EVIDENCE The Empirical problem Estimating the volatility of the forward rates Estimating the correlation structure Estimating the volatility of the volatility HEDGING Hedging the Volatility Structure Hedging the Correlation Structure Hedging in conditions of market stress

Hedging Derivatives

Hedging Derivatives PDF Author: Thorsten Rheinlander
Publisher: World Scientific
ISBN: 9814338796
Category : Business & Economics
Languages : en
Pages : 244

Book Description
Valuation and hedging of financial derivatives are intrinsically linked concepts. Choosing appropriate hedging techniques depends on both the type of derivative and assumptions placed on the underlying stochastic process. This volume provides a systematic treatment of hedging in incomplete markets. Mean-variance hedging under the risk-neutral measure is applied in the framework of exponential L vy processes and for derivatives written on defaultable assets. It is discussed how to complete markets based upon stochastic volatility models via trading in both stocks and vanilla options. Exponential utility indifference pricing is explored via a duality with entropy minimization. Backward stochastic differential equations offer an alternative approach and are moreover applied to study markets with trading constraints including basis risk. A range of optimal martingale measures are discussed including the entropy, Esscher and minimal martingale measures. Quasi-symmetry properties of stochastic processes are deployed in the semi-static hedging of barrier options. This book is directed towards both graduate students and researchers in mathematical finance, and will also provide an orientation to applied mathematicians, financial economists and practitioners wishing to explore recent progress in this field.

International Convergence of Capital Measurement and Capital Standards

International Convergence of Capital Measurement and Capital Standards PDF Author:
Publisher: Lulu.com
ISBN: 9291316695
Category : Bank capital
Languages : en
Pages : 294

Book Description


Hedging Derivatives

Hedging Derivatives PDF Author: Thorsten Rheinlander
Publisher: World Scientific
ISBN: 981433880X
Category : Business & Economics
Languages : en
Pages : 244

Book Description
Valuation and hedging of financial derivatives are intrinsically linked concepts. Choosing appropriate hedging techniques depends on both the type of derivative and assumptions placed on the underlying stochastic process. This volume provides a systematic treatment of hedging in incomplete markets. Mean-variance hedging under the risk-neutral measure is applied in the framework of exponential L(r)vy processes and for derivatives written on defaultable assets. It is discussed how to complete markets based upon stochastic volatility models via trading in both stocks and vanilla options. Exponential utility indifference pricing is explored via a duality with entropy minimization. Backward stochastic differential equations offer an alternative approach and are moreover applied to study markets with trading constraints including basis risk. A range of optimal martingale measures are discussed including the entropy, Esscher and minimal martingale measures. Quasi-symmetry properties of stochastic processes are deployed in the semi-static hedging of barrier options. This book is directed towards both graduate students and researchers in mathematical finance, and will also provide an orientation to applied mathematicians, financial economists and practitioners wishing to explore recent progress in this field."

Derivatives Analytics with Python

Derivatives Analytics with Python PDF Author: Yves Hilpisch
Publisher: John Wiley & Sons
ISBN: 1119038006
Category : Business & Economics
Languages : en
Pages : 390

Book Description
Supercharge options analytics and hedging using the power of Python Derivatives Analytics with Python shows you how to implement market-consistent valuation and hedging approaches using advanced financial models, efficient numerical techniques, and the powerful capabilities of the Python programming language. This unique guide offers detailed explanations of all theory, methods, and processes, giving you the background and tools necessary to value stock index options from a sound foundation. You'll find and use self-contained Python scripts and modules and learn how to apply Python to advanced data and derivatives analytics as you benefit from the 5,000+ lines of code that are provided to help you reproduce the results and graphics presented. Coverage includes market data analysis, risk-neutral valuation, Monte Carlo simulation, model calibration, valuation, and dynamic hedging, with models that exhibit stochastic volatility, jump components, stochastic short rates, and more. The companion website features all code and IPython Notebooks for immediate execution and automation. Python is gaining ground in the derivatives analytics space, allowing institutions to quickly and efficiently deliver portfolio, trading, and risk management results. This book is the finance professional's guide to exploiting Python's capabilities for efficient and performing derivatives analytics. Reproduce major stylized facts of equity and options markets yourself Apply Fourier transform techniques and advanced Monte Carlo pricing Calibrate advanced option pricing models to market data Integrate advanced models and numeric methods to dynamically hedge options Recent developments in the Python ecosystem enable analysts to implement analytics tasks as performing as with C or C++, but using only about one-tenth of the code or even less. Derivatives Analytics with Python — Data Analysis, Models, Simulation, Calibration and Hedging shows you what you need to know to supercharge your derivatives and risk analytics efforts.

Credit Risk: Modeling, Valuation and Hedging

Credit Risk: Modeling, Valuation and Hedging PDF Author: Tomasz R. Bielecki
Publisher: Springer Science & Business Media
ISBN: 3662048213
Category : Business & Economics
Languages : en
Pages : 517

Book Description
The motivation for the mathematical modeling studied in this text on developments in credit risk research is the bridging of the gap between mathematical theory of credit risk and the financial practice. Mathematical developments are covered thoroughly and give the structural and reduced-form approaches to credit risk modeling. Included is a detailed study of various arbitrage-free models of default term structures with several rating grades.

Quantitative Analysis, Derivatives Modeling, And Trading Strategies: In The Presence Of Counterparty Credit Risk For The Fixed-income Market

Quantitative Analysis, Derivatives Modeling, And Trading Strategies: In The Presence Of Counterparty Credit Risk For The Fixed-income Market PDF Author: Bin Li
Publisher: World Scientific
ISBN: 9814494240
Category : Business & Economics
Languages : en
Pages : 523

Book Description
This book addresses selected practical applications and recent developments in the areas of quantitative financial modeling in derivatives instruments, some of which are from the authors' own research and practice. It is written from the viewpoint of financial engineers or practitioners, and, as such, it puts more emphasis on the practical applications of financial mathematics in the real market than the mathematics itself with precise (and tedious) technical conditions. It attempts to combine economic insights with mathematics and modeling so as to help the reader to develop intuitions.Among the modeling and the numerical techniques presented are the practical applications of the martingale theories, such as martingale model factory and martingale resampling and interpolation. In addition, the book addresses the counterparty credit risk modeling, pricing, and arbitraging strategies from the perspective of a front office functionality and a revenue center (rather than merely a risk management functionality), which are relatively recent developments and are of increasing importance. It also discusses various trading structuring strategies and touches upon some popular credit/IR/FX hybrid products, such as PRDC, TARN, Snowballs, Snowbears, CCDS, and credit extinguishers.While the primary scope of this book is the fixed-income market (with further focus on the interest rate market), many of the methodologies presented also apply to other financial markets, such as the credit, equity, foreign exchange, and commodity markets.

Optimization-Based Models for Measuring and Hedging Risk in Fixed Income Markets

Optimization-Based Models for Measuring and Hedging Risk in Fixed Income Markets PDF Author: Johan Hagenbjörk
Publisher: Linköping University Electronic Press
ISBN: 917929927X
Category :
Languages : sv
Pages : 156

Book Description
The global fixed income market is an enormous financial market whose value by far exceeds that of the public stock markets. The interbank market consists of interest rate derivatives, whose primary purpose is to manage interest rate risk. The credit market primarily consists of the bond market, which links investors to companies, institutions, and governments with borrowing needs. This dissertation takes an optimization perspective upon modeling both these areas of the fixed-income market. Legislators on the national markets require financial actors to value their financial assets in accordance with market prices. Thus, prices of many assets, which are not publicly traded, must be determined mathematically. The financial quantities needed for pricing are not directly observable but must be measured through solving inverse optimization problems. These measurements are based on the available market prices, which are observed with various degrees of measurement noise. For the interbank market, the relevant financial quantities consist of term structures of interest rates, which are curves displaying the market rates for different maturities. For the bond market, credit risk is an additional factor that can be modeled through default intensity curves and term structures of recovery rates in case of default. By formulating suitable optimization models, the different underlying financial quantities can be measured in accordance with observable market prices, while conditions for economic realism are imposed. Measuring and managing risk is closely connected to the measurement of the underlying financial quantities. Through a data-driven method, we can show that six systematic risk factors can be used to explain almost all variance in the interest rate curves. By modeling the dynamics of these six risk factors, possible outcomes can be simulated in the form of term structure scenarios. For short-term simulation horizons, this results in a representation of the portfolio value distribution that is consistent with the realized outcomes from historically observed term structures. This enables more accurate measurements of interest rate risk, where our proposed method exhibits both lower risk and lower pricing errors compared to traditional models. We propose a method for decomposing changes in portfolio values for an arbitrary portfolio into the risk factors that affect the value of each instrument. By demonstrating the method for the six systematic risk factors identified for the interbank market, we show that almost all changes in portfolio value and portfolio variance can be attributed to these risk factors. Additional risk factors and approximation errors are gathered into two terms, which can be studied to ensure the quality of the performance attribution, and possibly improve it. To eliminate undesired risk within trading books, banks use hedging. Traditional methods do not take transaction costs into account. We, therefore, propose a method for managing the risks in the interbank market through a stochastic optimization model that considers transaction costs. This method is based on a scenario approximation of the optimization problem where the six systematic risk factors are simulated, and the portfolio variance is weighted against the transaction costs. This results in a method that is preferred over the traditional methods for all risk-averse investors. For the credit market, we use data from the bond market in combination with the interbank market to make accurate measurements of the financial quantities. We address the notoriously difficult problem of separating default risk from recovery risk. In addition to the previous identified six systematic risk factors for risk-free interests, we identify four risk factors that explain almost all variance in default intensities, while a single risk factor seems sufficient to model the recovery risk. Overall, this is a higher number of risk factors than is usually found in the literature. Through a simple model, we can measure the variance in bond prices in terms of these systematic risk factors, and through performance attribution, we relate these values to the empirically realized variances from the quoted bond prices. De globala ränte- och kreditmarknaderna är enorma finansiella marknader vars sammanlagda värden vida överstiger de publika aktiemarknadernas. Räntemarknaden består av räntederivat vars främsta användningsområde är hantering av ränterisker. Kreditmarknaden utgörs i första hand av obligationsmarknaden som syftar till att förmedla pengar från investerare till företag, institutioner och stater med upplåningsbehov. Denna avhandling fokuserar på att utifrån ett optimeringsperspektiv modellera både ränte- och obligationsmarknaden. Lagstiftarna på de nationella marknaderna kräver att de finansiella aktörerna värderar sina finansiella tillgångar i enlighet med marknadspriser. Därmed måste priserna på många instrument, som inte handlas publikt, beräknas matematiskt. De finansiella storheter som krävs för denna prissättning är inte direkt observerbara, utan måste mätas genom att lösa inversa optimeringsproblem. Dessa mätningar görs utifrån tillgängliga marknadspriser, som observeras med varierande grad av mätbrus. För räntemarknaden utgörs de relevanta finansiella storheterna av räntekurvor som åskådliggör marknadsräntorna för olika löptider. För obligationsmarknaden utgör kreditrisken en ytterligare faktor som modelleras via fallissemangsintensitetskurvor och kurvor kopplade till förväntat återvunnet kapital vid eventuellt fallissemang. Genom att formulera lämpliga optimeringsmodeller kan de olika underliggande finansiella storheterna mätas i enlighet med observerbara marknadspriser samtidigt som ekonomisk realism eftersträvas. Mätning och hantering av risker är nära kopplat till mätningen av de underliggande finansiella storheterna. Genom en datadriven metod kan vi visa att sex systematiska riskfaktorer kan användas för att förklara nästan all varians i räntekurvorna. Genom att modellera dynamiken i dessa sex riskfaktorer kan tänkbara utfall för räntekurvor simuleras. För kortsiktiga simuleringshorisonter resulterar detta i en representation av fördelningen av portföljvärden som väl överensstämmer med de realiserade utfallen från historiskt observerade räntekurvor. Detta möjliggör noggrannare mätningar av ränterisk där vår föreslagna metod uppvisar såväl lägre risk som mindre prissättningsfel jämfört med traditionella modeller. Vi föreslår en metod för att dekomponera portföljutvecklingen för en godtycklig portfölj till de riskfaktorer som påverkar värdet för respektive instrument. Genom att demonstrera metoden för de sex systematiska riskfaktorerna som identifierats för räntemarknaden visar vi att nästan all portföljutveckling och portföljvarians kan härledas till dessa riskfaktorer. Övriga riskfaktorer och approximationsfel samlas i två termer, vilka kan användas för att säkerställa och eventuellt förbättra kvaliteten i prestationshärledningen. För att eliminera oönskad risk i sina tradingböcker använder banker sig av hedging. Traditionella metoder tar ingen hänsyn till transaktionskostnader. Vi föreslår därför en metod för att hantera riskerna på räntemarknaden genom en stokastisk optimeringsmodell som också tar hänsyn till transaktionskostnader. Denna metod bygger på en scenarioapproximation av optimeringsproblemet där de sex systematiska riskfaktorerna simuleras och portföljvariansen vägs mot transaktionskostnaderna. Detta resulterar i en metod som, för alla riskaverta investerare, är att föredra framför de traditionella metoderna. På kreditmarknaden använder vi data från obligationsmarknaden i kombination räntemarknaden för att göra noggranna mätningar av de finansiella storheterna. Vi angriper det erkänt svåra problemet att separera fallissemangsrisk från återvinningsrisk. Förutom de tidigare sex systematiska riskfaktorerna för riskfri ränta, identifierar vi fyra riskfaktorer som förklarar nästan all varians i fallissemangsintensiteter, medan en enda riskfaktor tycks räcka för att modellera återvinningsrisken. Sammanlagt är detta ett större antal riskfaktorer än vad som brukar användas i litteraturen. Via en enkel modell kan vi mäta variansen i obligationspriser i termer av dessa systematiska riskfaktorer och genom prestationshärledningen relatera dessa värden till de empiriskt realiserade varianserna från kvoterade obligationspriser.