Author: Robert Y. Liang
Publisher:
ISBN:
Category : Asphalt cement
Languages : en
Pages : 278
Book Description
The mixture design and performance characteristics of crumb rubber modified asphalt concretes were investigated in this research project to meet the requirements of the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991, which has required each State to incorporate scrap tire rubber into its asphalt paving materials. Specifically, the objectives of this research encompass the following: (i) investigation of the rheological properties of asphalt-rubber binder to determine optimum content of crumb rubber; (ii) development of optimum mix design for various applications, including both wet and dry mix processes; (iii) characterization of mechanical properties of recommended paving mixtures, including resilient modulus, fatigue cracking behavior, low-temperature thermal cracking resistance, water sensitivity test, incremental creep test and loaded wheel track test; and (iv) comparison of performance of selected paving mixes.
Mixture Desigh [sic] and Performance Prediction of Rubber-modified Asphalt in Ohio
Author: Robert Y. Liang
Publisher:
ISBN:
Category : Asphalt cement
Languages : en
Pages : 278
Book Description
The mixture design and performance characteristics of crumb rubber modified asphalt concretes were investigated in this research project to meet the requirements of the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991, which has required each State to incorporate scrap tire rubber into its asphalt paving materials. Specifically, the objectives of this research encompass the following: (i) investigation of the rheological properties of asphalt-rubber binder to determine optimum content of crumb rubber; (ii) development of optimum mix design for various applications, including both wet and dry mix processes; (iii) characterization of mechanical properties of recommended paving mixtures, including resilient modulus, fatigue cracking behavior, low-temperature thermal cracking resistance, water sensitivity test, incremental creep test and loaded wheel track test; and (iv) comparison of performance of selected paving mixes.
Publisher:
ISBN:
Category : Asphalt cement
Languages : en
Pages : 278
Book Description
The mixture design and performance characteristics of crumb rubber modified asphalt concretes were investigated in this research project to meet the requirements of the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991, which has required each State to incorporate scrap tire rubber into its asphalt paving materials. Specifically, the objectives of this research encompass the following: (i) investigation of the rheological properties of asphalt-rubber binder to determine optimum content of crumb rubber; (ii) development of optimum mix design for various applications, including both wet and dry mix processes; (iii) characterization of mechanical properties of recommended paving mixtures, including resilient modulus, fatigue cracking behavior, low-temperature thermal cracking resistance, water sensitivity test, incremental creep test and loaded wheel track test; and (iv) comparison of performance of selected paving mixes.
Guidelines for Implementing NCHRP 1-37A M-E Design Procedures: Literature review
Author:
Publisher:
ISBN:
Category : Pavements
Languages : en
Pages : 126
Book Description
Highway agencies across the nation are moving towards implementation of the new AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) for pavement design. The benefits of implementing the MEPDG for routine use in Ohio includes (1) achieving more cost effective and reliable pavement designs, (2) lower initial and life cycle costs to the agency, and (3) reduced highway user impact due to lane closures for maintenance and rehabilitation of pavements. Implementation of the MEPDG is a process that requires time and agency resources (staffing, training, testing facilities including equipment, and so on). A key requirement is validating the MEPDG's nationally calibrated pavement distress and smoothness prediction models when applied under Ohio conditions and performing local calibration if needed. Feasibility of using the MEPDG's national models in Ohio was investigated under this study using data from a limited number of LTPP projects located in Ohio. Results based on limited data showed inadequate goodness of fit and significant bias in a number of the MEPDG new HMA pavement and JPCP performance prediction models. Limited recalibration of these models showed promising results indicating that a full-scale recalibration effort using a more extensive database assembled from projects located throughout the state is feasible.
Publisher:
ISBN:
Category : Pavements
Languages : en
Pages : 126
Book Description
Highway agencies across the nation are moving towards implementation of the new AASHTO Mechanistic-Empirical Pavement Design Guide (MEPDG) for pavement design. The benefits of implementing the MEPDG for routine use in Ohio includes (1) achieving more cost effective and reliable pavement designs, (2) lower initial and life cycle costs to the agency, and (3) reduced highway user impact due to lane closures for maintenance and rehabilitation of pavements. Implementation of the MEPDG is a process that requires time and agency resources (staffing, training, testing facilities including equipment, and so on). A key requirement is validating the MEPDG's nationally calibrated pavement distress and smoothness prediction models when applied under Ohio conditions and performing local calibration if needed. Feasibility of using the MEPDG's national models in Ohio was investigated under this study using data from a limited number of LTPP projects located in Ohio. Results based on limited data showed inadequate goodness of fit and significant bias in a number of the MEPDG new HMA pavement and JPCP performance prediction models. Limited recalibration of these models showed promising results indicating that a full-scale recalibration effort using a more extensive database assembled from projects located throughout the state is feasible.
Advances in Materials and Pavement Prediction
Author: Eyad Masad
Publisher: CRC Press
ISBN: 0429855796
Category : Technology & Engineering
Languages : en
Pages : 879
Book Description
Advances in Materials and Pavement Performance Prediction contains the papers presented at the International Conference on Advances in Materials and Pavement Performance Prediction (AM3P, Doha, Qatar, 16- 18 April 2018). There has been an increasing emphasis internationally in the design and construction of sustainable pavement systems. Advances in Materials and Pavement Prediction reflects this development highlighting various approaches to predict pavement performance. The contributions discuss links and interactions between material characterization methods, empirical predictions, mechanistic modeling, and statistically-sound calibration and validation methods. There is also emphasis on comparisons between modeling results and observed performance. The topics of the book include (but are not limited to): • Experimental laboratory material characterization • Field measurements and in situ material characterization • Constitutive modeling and simulation • Innovative pavement materials and interface systems • Non-destructive measurement techniques • Surface characterization, tire-surface interaction, pavement noise • Pavement rehabilitation • Case studies Advances in Materials and Pavement Performance Prediction will be of interest to academics and engineers involved in pavement engineering.
Publisher: CRC Press
ISBN: 0429855796
Category : Technology & Engineering
Languages : en
Pages : 879
Book Description
Advances in Materials and Pavement Performance Prediction contains the papers presented at the International Conference on Advances in Materials and Pavement Performance Prediction (AM3P, Doha, Qatar, 16- 18 April 2018). There has been an increasing emphasis internationally in the design and construction of sustainable pavement systems. Advances in Materials and Pavement Prediction reflects this development highlighting various approaches to predict pavement performance. The contributions discuss links and interactions between material characterization methods, empirical predictions, mechanistic modeling, and statistically-sound calibration and validation methods. There is also emphasis on comparisons between modeling results and observed performance. The topics of the book include (but are not limited to): • Experimental laboratory material characterization • Field measurements and in situ material characterization • Constitutive modeling and simulation • Innovative pavement materials and interface systems • Non-destructive measurement techniques • Surface characterization, tire-surface interaction, pavement noise • Pavement rehabilitation • Case studies Advances in Materials and Pavement Performance Prediction will be of interest to academics and engineers involved in pavement engineering.
Transportation Research Record
Ohio Documents
Author:
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 98
Book Description
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 98
Book Description
Guidelines for Implementing NCHRP 1-37A M-E Design Procedures: Summary of findings, implementation plan, and next steps
An Exploratory Study on Functionally Graded Materials with Application to Multilayered Pavement Design
Author: Ernian Pan
Publisher:
ISBN:
Category : Elasticity
Languages : en
Pages : 308
Book Description
The response of flexible pavement is largely influenced by the resilient modulus of the pavement profile. Different methods/approaches have been adopted in order to estimate or measure the resilient modulus of each layer assuming an average modulus within the layer. In order to account for the variation in the modulus of elasticity with depth within a layer in elastic pavement analysis, which is due to temperature or moisture variation with depth, the layer should be divided into several sublayers and the modulus should be gradually varied between the layers. A powerful and innovative computer program has been developed for elastic pavement analysis that overcomes the limitations of the existing pavement analysis programs. The new program can predict accurately and efficiently the response of the pavement consisted of any number of layers/sublayers and any number of loads. The complexity of the tire-pavement loading configuration can be modeled easily as well. Practical pavement engineering problems have been analyzed and discussed taking into consideration the modulus variation with depth as well as the complex tire-pavement loading configuration utilizing our newly developed MultiSmart3D program. The analyzed problems illustrated that powerful analytical tools, such as MultiSmart3D, are needed to study and predict the pavement response in practical and fast manners. For example, the predicted life time of the pavement can be increased or decreased by a factor more than two if the modulus of elasticity variation with depth is taken into consideration.
Publisher:
ISBN:
Category : Elasticity
Languages : en
Pages : 308
Book Description
The response of flexible pavement is largely influenced by the resilient modulus of the pavement profile. Different methods/approaches have been adopted in order to estimate or measure the resilient modulus of each layer assuming an average modulus within the layer. In order to account for the variation in the modulus of elasticity with depth within a layer in elastic pavement analysis, which is due to temperature or moisture variation with depth, the layer should be divided into several sublayers and the modulus should be gradually varied between the layers. A powerful and innovative computer program has been developed for elastic pavement analysis that overcomes the limitations of the existing pavement analysis programs. The new program can predict accurately and efficiently the response of the pavement consisted of any number of layers/sublayers and any number of loads. The complexity of the tire-pavement loading configuration can be modeled easily as well. Practical pavement engineering problems have been analyzed and discussed taking into consideration the modulus variation with depth as well as the complex tire-pavement loading configuration utilizing our newly developed MultiSmart3D program. The analyzed problems illustrated that powerful analytical tools, such as MultiSmart3D, are needed to study and predict the pavement response in practical and fast manners. For example, the predicted life time of the pavement can be increased or decreased by a factor more than two if the modulus of elasticity variation with depth is taken into consideration.
Development and Validation of Performance Prediction Models and Specifications for Asphalt Binders and Paving Mixes
Author: Robert L. Lytton
Publisher: Strategic Highway Research Program (Shrp)
ISBN: 9780309056175
Category : Asphalt concrete
Languages : en
Pages : 500
Book Description
A result of the Strategic Highway Research Program's asphalt research is the development of performance-based specifications for asphalt binders and mixtures to control 3 distress modes: rutting; fatigue cracking; and thermal cracking. The SHRP A-005 project developed detailed pavement performance models to support these binder and mixture specifications and performance-based mixture designs. This report documents the findings of this extensive research effort and provides supporting data for the performance-based specifications and mixture design procedure called SUPERPAVE. The A-005 contract developed and used a sophisticated, mechanistic-based pavement performance model to define the relationships between asphalt binder and mixture properties and pavement distress. A comprehensive pavement performance model was developed that predicts the amount of fatigue cracking, thermal cracking and rutting in asphalt concrete pavements with time, using results from the accelerated laboratory tests. The pavement performance models for each distress were also used to confirm the relevant binder and mixture properties established by other SHRP contractors. The model has 3 parts: a mixture evaluation model; a pavement response model; and a pavement distress model.
Publisher: Strategic Highway Research Program (Shrp)
ISBN: 9780309056175
Category : Asphalt concrete
Languages : en
Pages : 500
Book Description
A result of the Strategic Highway Research Program's asphalt research is the development of performance-based specifications for asphalt binders and mixtures to control 3 distress modes: rutting; fatigue cracking; and thermal cracking. The SHRP A-005 project developed detailed pavement performance models to support these binder and mixture specifications and performance-based mixture designs. This report documents the findings of this extensive research effort and provides supporting data for the performance-based specifications and mixture design procedure called SUPERPAVE. The A-005 contract developed and used a sophisticated, mechanistic-based pavement performance model to define the relationships between asphalt binder and mixture properties and pavement distress. A comprehensive pavement performance model was developed that predicts the amount of fatigue cracking, thermal cracking and rutting in asphalt concrete pavements with time, using results from the accelerated laboratory tests. The pavement performance models for each distress were also used to confirm the relevant binder and mixture properties established by other SHRP contractors. The model has 3 parts: a mixture evaluation model; a pavement response model; and a pavement distress model.