Author: Vladimir E. Bening
Publisher: Walter de Gruyter
ISBN: 3110936011
Category : Business & Economics
Languages : en
Pages : 456
Book Description
The series is devoted to the publication of high-level monographs and surveys which cover the whole spectrum of probability and statistics. The books of the series are addressed to both experts and advanced students.
Generalized Poisson Models and their Applications in Insurance and Finance
Author: Vladimir E. Bening
Publisher: Walter de Gruyter
ISBN: 3110936011
Category : Business & Economics
Languages : en
Pages : 456
Book Description
The series is devoted to the publication of high-level monographs and surveys which cover the whole spectrum of probability and statistics. The books of the series are addressed to both experts and advanced students.
Publisher: Walter de Gruyter
ISBN: 3110936011
Category : Business & Economics
Languages : en
Pages : 456
Book Description
The series is devoted to the publication of high-level monographs and surveys which cover the whole spectrum of probability and statistics. The books of the series are addressed to both experts and advanced students.
Generalized Linear Mixed Models
Author: Walter W. Stroup
Publisher: CRC Press
ISBN: 1439815135
Category : Mathematics
Languages : en
Pages : 547
Book Description
With numerous examples using SAS PROC GLIMMIX, this text presents an introduction to linear modeling using the generalized linear mixed model as an overarching conceptual framework. For readers new to linear models, the book helps them see the big picture. It shows how linear models fit with the rest of the core statistics curriculum and points out the major issues that statistical modelers must consider.
Publisher: CRC Press
ISBN: 1439815135
Category : Mathematics
Languages : en
Pages : 547
Book Description
With numerous examples using SAS PROC GLIMMIX, this text presents an introduction to linear modeling using the generalized linear mixed model as an overarching conceptual framework. For readers new to linear models, the book helps them see the big picture. It shows how linear models fit with the rest of the core statistics curriculum and points out the major issues that statistical modelers must consider.
Stochastic Geometry and Its Applications
Author: Sung Nok Chiu
Publisher: John Wiley & Sons
ISBN: 1118658256
Category : Mathematics
Languages : en
Pages : 561
Book Description
An extensive update to a classic text Stochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, engineering, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis. The previous edition of this book has served as the key reference in its field for over 18 years and is regarded as the best treatment of the subject of stochastic geometry, both as a subject with vital applications to spatial statistics and as a very interesting field of mathematics in its own right. This edition: Presents a wealth of models for spatial patterns and related statistical methods. Provides a great survey of the modern theory of random tessellations, including many new models that became tractable only in the last few years. Includes new sections on random networks and random graphs to review the recent ever growing interest in these areas. Provides an excellent introduction to theory and modelling of point processes, which covers some very latest developments. Illustrate the forefront theory of random sets, with many applications. Adds new results to the discussion of fibre and surface processes. Offers an updated collection of useful stereological methods. Includes 700 new references. Is written in an accessible style enabling non-mathematicians to benefit from this book. Provides a companion website hosting information on recent developments in the field www.wiley.com/go/cskm Stochastic Geometry and its Applications is ideally suited for researchers in physics, materials science, biology and ecological sciences as well as mathematicians and statisticians. It should also serve as a valuable introduction to the subject for students of mathematics and statistics.
Publisher: John Wiley & Sons
ISBN: 1118658256
Category : Mathematics
Languages : en
Pages : 561
Book Description
An extensive update to a classic text Stochastic geometry and spatial statistics play a fundamental role in many modern branches of physics, materials sciences, engineering, biology and environmental sciences. They offer successful models for the description of random two- and three-dimensional micro and macro structures and statistical methods for their analysis. The previous edition of this book has served as the key reference in its field for over 18 years and is regarded as the best treatment of the subject of stochastic geometry, both as a subject with vital applications to spatial statistics and as a very interesting field of mathematics in its own right. This edition: Presents a wealth of models for spatial patterns and related statistical methods. Provides a great survey of the modern theory of random tessellations, including many new models that became tractable only in the last few years. Includes new sections on random networks and random graphs to review the recent ever growing interest in these areas. Provides an excellent introduction to theory and modelling of point processes, which covers some very latest developments. Illustrate the forefront theory of random sets, with many applications. Adds new results to the discussion of fibre and surface processes. Offers an updated collection of useful stereological methods. Includes 700 new references. Is written in an accessible style enabling non-mathematicians to benefit from this book. Provides a companion website hosting information on recent developments in the field www.wiley.com/go/cskm Stochastic Geometry and its Applications is ideally suited for researchers in physics, materials science, biology and ecological sciences as well as mathematicians and statisticians. It should also serve as a valuable introduction to the subject for students of mathematics and statistics.
Mixed Effects Models for Complex Data
Author: Lang Wu
Publisher: CRC Press
ISBN: 9781420074086
Category : Mathematics
Languages : en
Pages : 431
Book Description
Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.
Publisher: CRC Press
ISBN: 9781420074086
Category : Mathematics
Languages : en
Pages : 431
Book Description
Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.
Applied Stochastic Modeling
Author: Liliana Blanco-Castañeda
Publisher: Springer Nature
ISBN: 3031312821
Category : Mathematics
Languages : en
Pages : 154
Book Description
This book provides the essential theoretical tools for stochastic modeling. The authors address the most used models in applications such as Markov chains with discrete-time parameters, hidden Markov chains, Poisson processes, and birth and death processes. This book also presents specific examples with simulation methods that apply the topics to different areas of knowledge. These examples include practical applications, such as modeling the COVID-19 pandemic and animal movement modeling. This book is concise and rigorous, presenting the material in an easily accessible manner that allows readers to learn how to address and solve problems of a stochastic nature.
Publisher: Springer Nature
ISBN: 3031312821
Category : Mathematics
Languages : en
Pages : 154
Book Description
This book provides the essential theoretical tools for stochastic modeling. The authors address the most used models in applications such as Markov chains with discrete-time parameters, hidden Markov chains, Poisson processes, and birth and death processes. This book also presents specific examples with simulation methods that apply the topics to different areas of knowledge. These examples include practical applications, such as modeling the COVID-19 pandemic and animal movement modeling. This book is concise and rigorous, presenting the material in an easily accessible manner that allows readers to learn how to address and solve problems of a stochastic nature.
Mixed Models
Author: Eugene Demidenko
Publisher: John Wiley & Sons
ISBN: 1118091574
Category : Mathematics
Languages : en
Pages : 768
Book Description
Praise for the First Edition “This book will serve to greatly complement the growing number of texts dealing with mixed models, and I highly recommend including it in one’s personal library.” —Journal of the American Statistical Association Mixed modeling is a crucial area of statistics, enabling the analysis of clustered and longitudinal data. Mixed Models: Theory and Applications with R, Second Edition fills a gap in existing literature between mathematical and applied statistical books by presenting a powerful examination of mixed model theory and application with special attention given to the implementation in R. The new edition provides in-depth mathematical coverage of mixed models’ statistical properties and numerical algorithms, as well as nontraditional applications, such as regrowth curves, shapes, and images. The book features the latest topics in statistics including modeling of complex clustered or longitudinal data, modeling data with multiple sources of variation, modeling biological variety and heterogeneity, Healthy Akaike Information Criterion (HAIC), parameter multidimensionality, and statistics of image processing. Mixed Models: Theory and Applications with R, Second Edition features unique applications of mixed model methodology, as well as: Comprehensive theoretical discussions illustrated by examples and figures Over 300 exercises, end-of-section problems, updated data sets, and R subroutines Problems and extended projects requiring simulations in R intended to reinforce material Summaries of major results and general points of discussion at the end of each chapter Open problems in mixed modeling methodology, which can be used as the basis for research or PhD dissertations Ideal for graduate-level courses in mixed statistical modeling, the book is also an excellent reference for professionals in a range of fields, including cancer research, computer science, and engineering.
Publisher: John Wiley & Sons
ISBN: 1118091574
Category : Mathematics
Languages : en
Pages : 768
Book Description
Praise for the First Edition “This book will serve to greatly complement the growing number of texts dealing with mixed models, and I highly recommend including it in one’s personal library.” —Journal of the American Statistical Association Mixed modeling is a crucial area of statistics, enabling the analysis of clustered and longitudinal data. Mixed Models: Theory and Applications with R, Second Edition fills a gap in existing literature between mathematical and applied statistical books by presenting a powerful examination of mixed model theory and application with special attention given to the implementation in R. The new edition provides in-depth mathematical coverage of mixed models’ statistical properties and numerical algorithms, as well as nontraditional applications, such as regrowth curves, shapes, and images. The book features the latest topics in statistics including modeling of complex clustered or longitudinal data, modeling data with multiple sources of variation, modeling biological variety and heterogeneity, Healthy Akaike Information Criterion (HAIC), parameter multidimensionality, and statistics of image processing. Mixed Models: Theory and Applications with R, Second Edition features unique applications of mixed model methodology, as well as: Comprehensive theoretical discussions illustrated by examples and figures Over 300 exercises, end-of-section problems, updated data sets, and R subroutines Problems and extended projects requiring simulations in R intended to reinforce material Summaries of major results and general points of discussion at the end of each chapter Open problems in mixed modeling methodology, which can be used as the basis for research or PhD dissertations Ideal for graduate-level courses in mixed statistical modeling, the book is also an excellent reference for professionals in a range of fields, including cancer research, computer science, and engineering.
Point Processes for Reliability Analysis
Author: Ji Hwan Cha
Publisher: Springer
ISBN: 3319735403
Category : Technology & Engineering
Languages : en
Pages : 427
Book Description
Focusing on the theory and applications of point processes, Point Processes for Reliability Analysis naturally combines classical results on the basic and advanced properties of point processes with recent theoretical findings of the authors. It also presents numerous examples that illustrate how general results and approaches are applied to stochastic description of repairable systems and systems operating in a random environment modelled by shock processes. The real life objects are operating in a changing, random environment. One of the ways to model an impact of this environment is via the external shocks occurring in accordance with some stochastic point processes. The Poisson (homogeneous and nonhomogeneous) process, the renewal process and their generalizations are considered as models for external shocks affecting an operating system. At the same time these processes model the consecutive failure/repair times of repairable engineering systems. Perfect, minimal and intermediate (imperfect) repairs are discussed in this respect. Covering material previously available only in the journal literature, Point Processes for Reliability Analysis provides a survey of recent developments in this area which will be invaluable to researchers and advanced students in reliability engineering and applied mathematics.
Publisher: Springer
ISBN: 3319735403
Category : Technology & Engineering
Languages : en
Pages : 427
Book Description
Focusing on the theory and applications of point processes, Point Processes for Reliability Analysis naturally combines classical results on the basic and advanced properties of point processes with recent theoretical findings of the authors. It also presents numerous examples that illustrate how general results and approaches are applied to stochastic description of repairable systems and systems operating in a random environment modelled by shock processes. The real life objects are operating in a changing, random environment. One of the ways to model an impact of this environment is via the external shocks occurring in accordance with some stochastic point processes. The Poisson (homogeneous and nonhomogeneous) process, the renewal process and their generalizations are considered as models for external shocks affecting an operating system. At the same time these processes model the consecutive failure/repair times of repairable engineering systems. Perfect, minimal and intermediate (imperfect) repairs are discussed in this respect. Covering material previously available only in the journal literature, Point Processes for Reliability Analysis provides a survey of recent developments in this area which will be invaluable to researchers and advanced students in reliability engineering and applied mathematics.
Point Processes with a Generalized Order Statistic Property
Author: Birgit Debrabant
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832519599
Category :
Languages : en
Pages : 154
Book Description
Mixed Poisson processes are a well known class of point processes derived from (stationary) Poisson processes. In particular they cover cases where the intensity of a Poisson process is unknown but can be assumed to follow a known probability distribution. This situation is common e. g. in insurance mathematics where for instance the number of accident claims in which an individual is involved and which is evolving over some time can in principal be well described by a Poisson process with an individual, yet normally unknown intensity corresponding to the individual's accident proneness. Modelling this intensity as a random variable naturally leads to a mixed model. Usually, an insurance company will have a good estimate of the associated mixing distribution due to its large portfolio of policies.
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832519599
Category :
Languages : en
Pages : 154
Book Description
Mixed Poisson processes are a well known class of point processes derived from (stationary) Poisson processes. In particular they cover cases where the intensity of a Poisson process is unknown but can be assumed to follow a known probability distribution. This situation is common e. g. in insurance mathematics where for instance the number of accident claims in which an individual is involved and which is evolving over some time can in principal be well described by a Poisson process with an individual, yet normally unknown intensity corresponding to the individual's accident proneness. Modelling this intensity as a random variable naturally leads to a mixed model. Usually, an insurance company will have a good estimate of the associated mixing distribution due to its large portfolio of policies.
Finite Mixture Models
Author: Geoffrey McLachlan
Publisher: John Wiley & Sons
ISBN: 047165406X
Category : Mathematics
Languages : en
Pages : 419
Book Description
An up-to-date, comprehensive account of major issues in finitemixture modeling This volume provides an up-to-date account of the theory andapplications of modeling via finite mixture distributions. With anemphasis on the applications of mixture models in both mainstreamanalysis and other areas such as unsupervised pattern recognition,speech recognition, and medical imaging, the book describes theformulations of the finite mixture approach, details itsmethodology, discusses aspects of its implementation, andillustrates its application in many common statisticalcontexts. Major issues discussed in this book include identifiabilityproblems, actual fitting of finite mixtures through use of the EMalgorithm, properties of the maximum likelihood estimators soobtained, assessment of the number of components to be used in themixture, and the applicability of asymptotic theory in providing abasis for the solutions to some of these problems. The author alsoconsiders how the EM algorithm can be scaled to handle the fittingof mixture models to very large databases, as in data miningapplications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and patternrecognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied andtheoretical statisticians as well as for researchers in the manyareas in which finite mixture models can be used to analyze data.
Publisher: John Wiley & Sons
ISBN: 047165406X
Category : Mathematics
Languages : en
Pages : 419
Book Description
An up-to-date, comprehensive account of major issues in finitemixture modeling This volume provides an up-to-date account of the theory andapplications of modeling via finite mixture distributions. With anemphasis on the applications of mixture models in both mainstreamanalysis and other areas such as unsupervised pattern recognition,speech recognition, and medical imaging, the book describes theformulations of the finite mixture approach, details itsmethodology, discusses aspects of its implementation, andillustrates its application in many common statisticalcontexts. Major issues discussed in this book include identifiabilityproblems, actual fitting of finite mixtures through use of the EMalgorithm, properties of the maximum likelihood estimators soobtained, assessment of the number of components to be used in themixture, and the applicability of asymptotic theory in providing abasis for the solutions to some of these problems. The author alsoconsiders how the EM algorithm can be scaled to handle the fittingof mixture models to very large databases, as in data miningapplications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and patternrecognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied andtheoretical statisticians as well as for researchers in the manyareas in which finite mixture models can be used to analyze data.
ICSA 2019
Author: Farit Mochamad Afendi
Publisher: European Alliance for Innovation
ISBN: 1631902202
Category : Education
Languages : en
Pages : 610
Book Description
This conference serves as a means of presenting and discussing various research results among academics, researchers, and practitioners in the fields of statistics, analytics, computing, data science, and its application. Based on 110 papers that have been presented there are three main topics as the focus of the discussion, namely Statistical Modeling, Predictive Analytics, and Pattern Learning. The approach is in the form of a study to obtain a valid methodology for extracting, collecting, storing, analyzing, and visualizing data including those derived from big data. The application studies cover various fields such as agriculture, climate, energy, industry, business, social, and so on. The conference is expected to be able to provide solutions to various problems in various fields through statistical and analytical approaches.
Publisher: European Alliance for Innovation
ISBN: 1631902202
Category : Education
Languages : en
Pages : 610
Book Description
This conference serves as a means of presenting and discussing various research results among academics, researchers, and practitioners in the fields of statistics, analytics, computing, data science, and its application. Based on 110 papers that have been presented there are three main topics as the focus of the discussion, namely Statistical Modeling, Predictive Analytics, and Pattern Learning. The approach is in the form of a study to obtain a valid methodology for extracting, collecting, storing, analyzing, and visualizing data including those derived from big data. The application studies cover various fields such as agriculture, climate, energy, industry, business, social, and so on. The conference is expected to be able to provide solutions to various problems in various fields through statistical and analytical approaches.