Missing Observations and Additive Outliers in Time Series Models PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Missing Observations and Additive Outliers in Time Series Models PDF full book. Access full book title Missing Observations and Additive Outliers in Time Series Models by Agustín Maravall. Download full books in PDF and EPUB format.

Missing Observations and Additive Outliers in Time Series Models

Missing Observations and Additive Outliers in Time Series Models PDF Author: Agustín Maravall
Publisher:
ISBN:
Category : Outliers (Statistics)
Languages : en
Pages : 64

Book Description


Missing Observations and Additive Outliers in Time Series Models

Missing Observations and Additive Outliers in Time Series Models PDF Author: Agustín Maravall
Publisher:
ISBN:
Category : Outliers (Statistics)
Languages : en
Pages : 64

Book Description


A Course in Time Series Analysis

A Course in Time Series Analysis PDF Author: Daniel Peña
Publisher: John Wiley & Sons
ISBN: 1118031229
Category : Mathematics
Languages : en
Pages : 494

Book Description
New statistical methods and future directions of research in time series A Course in Time Series Analysis demonstrates how to build time series models for univariate and multivariate time series data. It brings together material previously available only in the professional literature and presents a unified view of the most advanced procedures available for time series model building. The authors begin with basic concepts in univariate time series, providing an up-to-date presentation of ARIMA models, including the Kalman filter, outlier analysis, automatic methods for building ARIMA models, and signal extraction. They then move on to advanced topics, focusing on heteroscedastic models, nonlinear time series models, Bayesian time series analysis, nonparametric time series analysis, and neural networks. Multivariate time series coverage includes presentations on vector ARMA models, cointegration, and multivariate linear systems. Special features include: Contributions from eleven of the worldâ??s leading figures in time series Shared balance between theory and application Exercise series sets Many real data examples Consistent style and clear, common notation in all contributions 60 helpful graphs and tables Requiring no previous knowledge of the subject, A Course in Time Series Analysis is an important reference and a highly useful resource for researchers and practitioners in statistics, economics, business, engineering, and environmental analysis. An Instructor's Manual presenting detailed solutions to all the problems in he book is available upon request from the Wiley editorial department.

Time Series Analysis

Time Series Analysis PDF Author: George E. P. Box
Publisher: John Wiley & Sons
ISBN: 111867491X
Category : Mathematics
Languages : en
Pages : 712

Book Description
Praise for the Fourth Edition "The book follows faithfully the style of the original edition. The approach is heavily motivated by real-world time series, and by developing a complete approach to model building, estimation, forecasting and control." —Mathematical Reviews Bridging classical models and modern topics, the Fifth Edition of Time Series Analysis: Forecasting and Control maintains a balanced presentation of the tools for modeling and analyzing time series. Also describing the latest developments that have occurred in the field over the past decade through applications from areas such as business, finance, and engineering, the Fifth Edition continues to serve as one of the most influential and prominent works on the subject. Time Series Analysis: Forecasting and Control, Fifth Edition provides a clearly written exploration of the key methods for building, classifying, testing, and analyzing stochastic models for time series and describes their use in five important areas of application: forecasting; determining the transfer function of a system; modeling the effects of intervention events; developing multivariate dynamic models; and designing simple control schemes. Along with these classical uses, the new edition covers modern topics with new features that include: A redesigned chapter on multivariate time series analysis with an expanded treatment of Vector Autoregressive, or VAR models, along with a discussion of the analytical tools needed for modeling vector time series An expanded chapter on special topics covering unit root testing, time-varying volatility models such as ARCH and GARCH, nonlinear time series models, and long memory models Numerous examples drawn from finance, economics, engineering, and other related fields The use of the publicly available R software for graphical illustrations and numerical calculations along with scripts that demonstrate the use of R for model building and forecasting Updates to literature references throughout and new end-of-chapter exercises Streamlined chapter introductions and revisions that update and enhance the exposition Time Series Analysis: Forecasting and Control, Fifth Edition is a valuable real-world reference for researchers and practitioners in time series analysis, econometrics, finance, and related fields. The book is also an excellent textbook for beginning graduate-level courses in advanced statistics, mathematics, economics, finance, engineering, and physics.

Forecasting, Structural Time Series Models and the Kalman Filter

Forecasting, Structural Time Series Models and the Kalman Filter PDF Author: Andrew C. Harvey
Publisher: Cambridge University Press
ISBN: 1107717140
Category : Business & Economics
Languages : en
Pages : 578

Book Description
In this book, Andrew Harvey sets out to provide a unified and comprehensive theory of structural time series models. Unlike the traditional ARIMA models, structural time series models consist explicitly of unobserved components, such as trends and seasonals, which have a direct interpretation. As a result the model selection methodology associated with structural models is much closer to econometric methodology. The link with econometrics is made even closer by the natural way in which the models can be extended to include explanatory variables and to cope with multivariate time series. From the technical point of view, state space models and the Kalman filter play a key role in the statistical treatment of structural time series models. The book includes a detailed treatment of the Kalman filter. This technique was originally developed in control engineering, but is becoming increasingly important in fields such as economics and operations research. This book is concerned primarily with modelling economic and social time series, and with addressing the special problems which the treatment of such series poses. The properties of the models and the methodological techniques used to select them are illustrated with various applications. These range from the modellling of trends and cycles in US macroeconomic time series to to an evaluation of the effects of seat belt legislation in the UK.

Identification of Outliers

Identification of Outliers PDF Author: D. Hawkins
Publisher: Springer Science & Business Media
ISBN: 9401539944
Category : Science
Languages : en
Pages : 194

Book Description
The problem of outliers is one of the oldest in statistics, and during the last century and a half interest in it has waxed and waned several times. Currently it is once again an active research area after some years of relative neglect, and recent work has solved a number of old problems in outlier theory, and identified new ones. The major results are, however, scattered amongst many journal articles, and for some time there has been a clear need to bring them together in one place. That was the original intention of this monograph: but during execution it became clear that the existing theory of outliers was deficient in several areas, and so the monograph also contains a number of new results and conjectures. In view of the enormous volume ofliterature on the outlier problem and its cousins, no attempt has been made to make the coverage exhaustive. The material is concerned almost entirely with the use of outlier tests that are known (or may reasonably be expected) to be optimal in some way. Such topics as robust estimation are largely ignored, being covered more adequately in other sources. The numerous ad hoc statistics proposed in the early work on the grounds of intuitive appeal or computational simplicity also are not discussed in any detail.

Forecasting: principles and practice

Forecasting: principles and practice PDF Author: Rob J Hyndman
Publisher: OTexts
ISBN: 0987507117
Category : Business & Economics
Languages : en
Pages : 380

Book Description
Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.

Time Series Analysis of Irregularly Observed Data

Time Series Analysis of Irregularly Observed Data PDF Author: E. Parzen
Publisher: Springer Science & Business Media
ISBN: 1468494031
Category : Mathematics
Languages : en
Pages : 372

Book Description
With the support of the Office of Naval Research Program on Statistics and Probability (Dr. Edward J. Wegman, Director), The Department of Statistics at Texas A&M University hosted a Symposium on Time Series Analysis of Irregularly Observed Data during the period February 10-13, 1983. The symposium aimed to provide a review of the state of the art, define outstanding problems for research by theoreticians, transmit to practitioners recently developed algorithms, and stimulate interaction between statisticians and researchers in subject matter fields. Attendance was limited to actively involved researchers. This volume contains refereed versions of the papers presented at the Symposium. We would like to express our appreciation to the many colleagues and staff members whose cheerful help made the Symposium a successful happening which was enjoyed socially and intellectually by all participants. I would like to especially thank Dr. Donald W. Marquardt whose interest led me to undertake to organize this Symposium. This volume is dedicated to the world wide community of researchers who develop and apply methods of statistical analysis of time series. r:;) \J Picture Caption Participants in Symposium on Time Series Analysis of Irregularly Observed Data at Texas A&M University, College Station, Texas, February 10-13, 1983 First Row: Henry L. Gray, D. W. Marquardt, P. M. Robinson, Emanuel Parzen, Julia Abrahams, E. Masry, H. L. Weinert, R. H. Shumway.

Nonlinear Time Series Analysis

Nonlinear Time Series Analysis PDF Author: Holger Kantz
Publisher: Cambridge University Press
ISBN: 9780521529020
Category : Mathematics
Languages : en
Pages : 390

Book Description
The paradigm of deterministic chaos has influenced thinking in many fields of science. Chaotic systems show rich and surprising mathematical structures. In the applied sciences, deterministic chaos provides a striking explanation for irregular behaviour and anomalies in systems which do not seem to be inherently stochastic. The most direct link between chaos theory and the real world is the analysis of time series from real systems in terms of nonlinear dynamics. Experimental technique and data analysis have seen such dramatic progress that, by now, most fundamental properties of nonlinear dynamical systems have been observed in the laboratory. Great efforts are being made to exploit ideas from chaos theory wherever the data displays more structure than can be captured by traditional methods. Problems of this kind are typical in biology and physiology but also in geophysics, economics, and many other sciences.

Computational Statistics

Computational Statistics PDF Author: Yadolah Dodge
Publisher: Springer Science & Business Media
ISBN: 3662268116
Category : Business & Economics
Languages : en
Pages : 565

Book Description
The Role of the Computer in Statistics David Cox Nuffield College, Oxford OXIINF, U.K. A classification of statistical problems via their computational demands hinges on four components (I) the amount and complexity of the data, (il) the specificity of the objectives of the analysis, (iii) the broad aspects of the approach to analysis, (ill) the conceptual, mathematical and numerical analytic complexity of the methods. Computational requi rements may be limiting in (I) and (ill), either through the need for special programming effort, or because of the difficulties of initial data management or because of the load of detailed analysis. The implications of modern computational developments for statistical work can be illustrated in the context of the study of specific probabilistic models, the development of general statistical theory, the design of investigations and the analysis of empirical data. While simulation is usually likely to be the most sensible way of investigating specific complex stochastic models, computerized algebra has an obvious role in the more analyti cal work. It seems likely that statistics and applied probability have made insufficient use of developments in numerical analysis associated more with classical applied mathematics, in particular in the solution of large systems of ordinary and partial differential equations, integral equations and integra-differential equations and for the ¢raction of "useful" in formation from integral transforms. Increasing emphasis on models incorporating specific subject-matter considerations is one route to bridging the gap between statistical ana.

SAS for Forecasting Time Series, Third Edition

SAS for Forecasting Time Series, Third Edition PDF Author: John C. Brocklebank, Ph.D.
Publisher: SAS Institute
ISBN: 1629605441
Category : Computers
Languages : en
Pages : 616

Book Description
To use statistical methods and SAS applications to forecast the future values of data taken over time, you need only follow this thoroughly updated classic on the subject. With this third edition of SAS for Forecasting Time Series, intermediate-to-advanced SAS users—such as statisticians, economists, and data scientists—can now match the most sophisticated forecasting methods to the most current SAS applications. Starting with fundamentals, this new edition presents methods for modeling both univariate and multivariate data taken over time. From the well-known ARIMA models to unobserved components, methods that span the range from simple to complex are discussed and illustrated. Many of the newer methods are variations on the basic ARIMA structures. Completely updated, this new edition includes fresh, interesting business situations and data sets, and new sections on these up-to-date statistical methods: ARIMA models Vector autoregressive models Exponential smoothing models Unobserved component and state-space models Seasonal adjustment Spectral analysis Focusing on application, this guide teaches a wide range of forecasting techniques by example. The examples provide the statistical underpinnings necessary to put the methods into practice. The following up-to-date SAS applications are covered in this edition: The ARIMA procedure The AUTOREG procedure The VARMAX procedure The ESM procedure The UCM and SSM procedures The X13 procedure The SPECTRA procedure SAS Forecast Studio Each SAS application is presented with explanation of its strengths, weaknesses, and best uses. Even users of automated forecasting systems will benefit from this knowledge of what is done and why. Moreover, the accompanying examples can serve as templates that you easily adjust to fit your specific forecasting needs. This book is part of the SAS Press program.