Mise en oeuvre de procédé plasma-catalyse destiné à la valorisation du biogaz (CH4+CO2) en carburants liquides. Etude expérimentale et modélisations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Mise en oeuvre de procédé plasma-catalyse destiné à la valorisation du biogaz (CH4+CO2) en carburants liquides. Etude expérimentale et modélisations PDF full book. Access full book title Mise en oeuvre de procédé plasma-catalyse destiné à la valorisation du biogaz (CH4+CO2) en carburants liquides. Etude expérimentale et modélisations by Abdelkader Rahmani. Download full books in PDF and EPUB format.

Mise en oeuvre de procédé plasma-catalyse destiné à la valorisation du biogaz (CH4+CO2) en carburants liquides. Etude expérimentale et modélisations

Mise en oeuvre de procédé plasma-catalyse destiné à la valorisation du biogaz (CH4+CO2) en carburants liquides. Etude expérimentale et modélisations PDF Author: Abdelkader Rahmani
Publisher:
ISBN:
Category :
Languages : fr
Pages : 0

Book Description
Ce travail de thèse double culture s'inscrit dans le cadre de la Transition Énergétique vers un modèle intégrant les potentiels de production de biogaz. Il est consacré à l'étude de la technologie plasma-catalyse de reformage du méthane en présence du dioxyde de carbone en carburants liquides. Une étude géomatique a été développée afin de réaliser la cartographie des zones agricoles potentiellement productrices de biogaz en France. Les résultats révèlent que la cogénération et l'injection du bio-méthane dans le réseau gazier permettent de valoriser seulement 43% du potentiel total en biogaz issu des déchets agricoles en France. La transformation du biogaz en carburants liquides stockables et transportables, à l'aide d'un dispositif pouvant être installé dans des territoires ruraux éloignés, permettrait de tirer davantage de profit de ce potentiel. Les décharges plasma permettent de développer une réactivité suffisante pour exciter et dissocier les molécules du biogaz dans les conditions requises. Un modèle cinétique a été développé afin de déterminer les paramètres du plasma et l'évolution temporelle des espèces réactives ainsi que les processus de conversion du biogaz. Un procédé de Décharge à Barrière Diélectrique Surfacique a été réalisé pour la transformation de mélange de CH4 et de CO2 représentatif du biogaz. Les principaux produits gazeux sont CO, H2, C2H6 et C2H4 et les principaux produits liquides, représentant 3% à 8% de la masse de biogaz transformé, sont le méthanol, l'isopropanol, l'éthanol et l'acétaldéhyde. L'efficacité énergétique dépendant des paramètres opératoires et varie entre 2% et 9%. L'Energie Spécifique Injectée est le paramètre le plus influent sur l'efficacité énergétique du procédé ainsi que sur la distribution des produits. L'ajout de la vapeur d'eau, précurseur d'espèces actives telles que : OH, O et O-, apporte une nette amélioration des taux de conversion à un coût énergétique égal à 26 eV/molécule. Nous avons étudié le couplage plasma-catalyse par l'emploi de 12 catalyseurs solides. Nous avons élaboré par le procédé Fluidized Spray Plasma des catalyseurs tels que : X%CuO-Y%ZnO/Al2O3, TiO2/SiO2 et Ag/TiO2/SiO2. Ces catalyseurs, ainsi que des catalyseurs élaborés par d'autres techniques ont été caractérisés et testés dans le réacteur SDBD. Il en ressort que la nature du catalyseur affecte peu la conversion du biogaz mais elle modifie la distribution des produits liquides. La meilleure sélectivité en méthanol a été obtenue en utilisant le Pt/Al2O3 (élaboré par voie polyol) puis en utilisant le CuO/Al2O3 et le 60%Cu-40%ZnO/Al2O3.

Mise en oeuvre de procédé plasma-catalyse destiné à la valorisation du biogaz (CH4+CO2) en carburants liquides. Etude expérimentale et modélisations

Mise en oeuvre de procédé plasma-catalyse destiné à la valorisation du biogaz (CH4+CO2) en carburants liquides. Etude expérimentale et modélisations PDF Author: Abdelkader Rahmani
Publisher:
ISBN:
Category :
Languages : fr
Pages : 0

Book Description
Ce travail de thèse double culture s'inscrit dans le cadre de la Transition Énergétique vers un modèle intégrant les potentiels de production de biogaz. Il est consacré à l'étude de la technologie plasma-catalyse de reformage du méthane en présence du dioxyde de carbone en carburants liquides. Une étude géomatique a été développée afin de réaliser la cartographie des zones agricoles potentiellement productrices de biogaz en France. Les résultats révèlent que la cogénération et l'injection du bio-méthane dans le réseau gazier permettent de valoriser seulement 43% du potentiel total en biogaz issu des déchets agricoles en France. La transformation du biogaz en carburants liquides stockables et transportables, à l'aide d'un dispositif pouvant être installé dans des territoires ruraux éloignés, permettrait de tirer davantage de profit de ce potentiel. Les décharges plasma permettent de développer une réactivité suffisante pour exciter et dissocier les molécules du biogaz dans les conditions requises. Un modèle cinétique a été développé afin de déterminer les paramètres du plasma et l'évolution temporelle des espèces réactives ainsi que les processus de conversion du biogaz. Un procédé de Décharge à Barrière Diélectrique Surfacique a été réalisé pour la transformation de mélange de CH4 et de CO2 représentatif du biogaz. Les principaux produits gazeux sont CO, H2, C2H6 et C2H4 et les principaux produits liquides, représentant 3% à 8% de la masse de biogaz transformé, sont le méthanol, l'isopropanol, l'éthanol et l'acétaldéhyde. L'efficacité énergétique dépendant des paramètres opératoires et varie entre 2% et 9%. L'Energie Spécifique Injectée est le paramètre le plus influent sur l'efficacité énergétique du procédé ainsi que sur la distribution des produits. L'ajout de la vapeur d'eau, précurseur d'espèces actives telles que : OH, O et O-, apporte une nette amélioration des taux de conversion à un coût énergétique égal à 26 eV/molécule. Nous avons étudié le couplage plasma-catalyse par l'emploi de 12 catalyseurs solides. Nous avons élaboré par le procédé Fluidized Spray Plasma des catalyseurs tels que : X%CuO-Y%ZnO/Al2O3, TiO2/SiO2 et Ag/TiO2/SiO2. Ces catalyseurs, ainsi que des catalyseurs élaborés par d'autres techniques ont été caractérisés et testés dans le réacteur SDBD. Il en ressort que la nature du catalyseur affecte peu la conversion du biogaz mais elle modifie la distribution des produits liquides. La meilleure sélectivité en méthanol a été obtenue en utilisant le Pt/Al2O3 (élaboré par voie polyol) puis en utilisant le CuO/Al2O3 et le 60%Cu-40%ZnO/Al2O3.

Élaboration, caractérisation et mise en œuvre d'un catalyseur dans le reformage du biogaz en vue de la production d'hydrogène vert

Élaboration, caractérisation et mise en œuvre d'un catalyseur dans le reformage du biogaz en vue de la production d'hydrogène vert PDF Author: Thanh Son Phan
Publisher:
ISBN:
Category :
Languages : fr
Pages : 206

Book Description
La production du biogaz ne cesse d'augmenter dans le monde entier. La combustion pour produire de la chaleur et de l'électricité, de même que la production du biométhane pour l'injection au réseau de gaz de ville sont les deux applications industrielles majeures du biogaz. La recherche actuelle sur la valorisation du biogaz se focalise sur la production des produits à haute valeur ajoutée comme l'hydrogène pour la mobilité. C'est l'objectif principal du projet VABHYOGAZ3, financé par ADEME, qui vise à déployer la production d'H2 à partir du biogaz dans le Tarn. Le procédé de reformage du biogaz adopté par les partenaires industriels du projet VABHYOGAZ3 est le vaporeformage, qui est couramment utilisé dans l'industrie pour reformer le gaz naturel, et qui est un procédé fortement énergivore. Cette thèse a pour objectif de développer des catalyseurs performants pour le reformage à sec du méthane (RSB : conversion de CH4 et CO2 en syngas - mélange de CO et H2) et pour le tri-reformage du méthane (Tri-RB : conversion de CH4, CO2, H2O et O2 en syngas). Le but ultime est d'optimiser l'efficacité énergétique du procédé global de la production d'H2 via le reformage du biogaz, qui est indispensable pour rendre ce procédé économiquement viable. En fait, les catalyseurs en RSB et Tri-RB ont souvent le problème de désactivation catalytique en raison du dépôt de coke et du frittage thermique à haute température (> 700°C). L'obtention d'un catalyseur performant sous les conditions sévères de RSB et Tri-RB est crucial pour le déploiement de ces procédés à large échelle industrielle. Dans un premier temps, une étude sur la thermodynamique des procédés globaux de la production d'H2 via le reformage du biogaz a été effectuée. Les bilans de matière et d'énergie de ces procédés ont aussi été réalisés par la simulation sur Aspen Plus. Ensuite, différents catalyseurs à base de nickel supporté sur les supports d'hydroxyapatite (HAP) et d'hydroxyapatite substituée au Mg (Mg_HAP) ont été préparés et caractérisés. Les supports à base d'HAP sont considérés comme des nouveaux matériaux catalytiques qui ont des propriétés appropriées en catalyse hétérogène, en particulier pour des procédés à haute température tels que RSB et Tri-RB. Dans cette étude, les supports HAP ayant les rapports molaires de Ca/P de 1,55, 1,67 et 1,75, et Mg_HAP (substitution de 2,2, 5,8 et 8,5% de Ca par Mg) ont été synthétisés. Ces supports ont été dopés avec 5% en masse de Ni par imprégnation à sec. Ces catalyseurs ont été évalués dans les deux réactions de RSB et Tri-RB dans un réacteur à lit fixe. Une étude paramétrique sur l'influence des conditions opératoires incluant la température, la pression totale, le débit d'alimentation du biogaz, et le rapport molaire de la vapeur d'eau sur méthane (S/C) et d'oxygène sur méthane (O/C), a été effectuée. L'objectif a été de comparer et d'identifier les meilleurs catalyseurs et les meilleurs conditions opératoires. Les bilans de matières ont été établis. Les raisons de la désactivation catalytique ont été mises en évidence. Enfin, la stabilité catalytique des meilleurs catalyseurs a été étudiée pendant 150-300 h de réaction. Les résultats obtenus montrent que les catalyseurs à base de Ni supporté sur HAP ou Mg_HAP sont compétitifs par rapport aux meilleurs catalyseurs identifiés dans la littérature. Ce travail confirme également l'intérêt de l'utilisation des nouveaux supports à base d'HAP dans la catalyse hétérogène et en particulier dans les procédés à haute température.

Valorisation catalytique du biogaz (CH4 +CO2) par reformage à sec

Valorisation catalytique du biogaz (CH4 +CO2) par reformage à sec PDF Author: Maryam Safariamin
Publisher:
ISBN:
Category :
Languages : fr
Pages : 312

Book Description
Dans cette étude, la réaction de reformage du méthane par le CO2 a été étudiée en présence de catalyseurs à base de ruthénium et cuivre déposés sur Al2O3, CeO2 et oxydes binaires CeO2-Al2O3 ainsi que oxyde mixtes issus de précurseurs hydrotalcites. Le but de ce travail est la réduction des gaz à effet de serre (CH4 + CO2) afin d’obtenir le gaz de synthèse (H2 + CO) qui sera utilisé pour différentes applications dont l’énergie propre. Les catalyseurs ont été préparés par imprégnation à sec et caractérisés par différentes méthodes physico-chimique (BET, DRX, IR-FT, UV-Visible, TPR, ATD/TG et RPE) afin de dégager des corrélations entre leurs propriétés physico-chimique et leurs performances catalytiques. Les influences sur l’activité catalytique des différentes conditions et du prétraitement des solides ont été étudiées. La production d'hydrogène est fortement influencée par la nature de la phase métallique et des supports utilisés. Il est remarquable que les deux types de catalyseurs (Ru et Cu/support) n’ont pas des activités similaires pour la réaction étudiée. Les catalyseurs à base de ruthénium sont beaucoup plus actifs que ceux à base de cuivre. Les hydrotalcites se sont montrés performant pour la réaction de reformage, mais ils produisent une grande quantité du coke qui désactive facilement le catalyseur. Parmi tous les catalyseurs étudiés, le solide contenant 5% de RuO2 sur le support d’oxydes binaires CeO2-Al2O3 s'est avéré le plus actif et le plus stable. L’importante réactivité de ce catalyseur est associée d’une part à la bonne dispersion des espèces de ruthénium métallique et d’autre part à la très faible quantité de coke observé sur le catalyseur après 14 jours de vieillissement.

Plasma Catalytic Process for CO2 Methanation

Plasma Catalytic Process for CO2 Methanation PDF Author: Magdalena Nizio
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
The limited resources of oil and natural gas, together with an increasing energy demand, forces us to seek more and more efficient and cleaner energy production alternatives. Hydrogen has been recently considered as a promising energy carrier. However, there are several inherent problems to the utilization of H2, from its transportation to its distribution. Transformation of the H2 molecule by fixing into a carbon-containing compound, i.e. CH4, will offer the possibility of using the conventional transportation network. Indeed, the Sabatier reaction, which is highly exothermic, involves the reaction of carbon dioxide and hydrogen gas in order to produce methane and water. This process, called methanation, represents a feasible approach contributing to the reduction of the CO2 emissions in our atmosphere, through a closed carbon cycle involving the valorization of CO2, i.e. from capture. However, below a temperature of 250 °C, the conversion becomes practically close to 0 %, whereas at higher temperatures, i.e., (>300 oC), the co-existence of secondary reactions favours the formation of CO and H2. This is the reason why new catalysts and process conditions are continuously being investigated in order to maximize the methane selectivity at low reaction temperatures at atmospheric pressure. Therefore, by using catalysts combined to Dielectric Barrier Discharge plasmas (DBD), the activation of the methanation reaction can be enhanced and overcome the drawbacks of existing conventional processes. Several Ni-containing catalysts were prepared using various ceria-zirconia oxides as supports, with different Ce/Zr ratios. The results obtained in the adiabatic conditions at low temperatures (ranging between 100-150 °C), in the presence of catalysts activated by plasma, are promising. Indeed, the conversion of CO2 to CH4 is about 85 % with a selectivity close to 100 %. The same conversion in the absence of the plasma activation of the catalyst is observed at 350 °C. At low temperatures (120-150 °C) and without plasma, conversion is almost close to zero. This low consumption energy system helps reduce the cost of production of synthetic methane together with an extended life of the catalyst.