Mirzakhani’s Curve Counting and Geodesic Currents PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Mirzakhani’s Curve Counting and Geodesic Currents PDF full book. Access full book title Mirzakhani’s Curve Counting and Geodesic Currents by Viveka Erlandsson. Download full books in PDF and EPUB format.

Mirzakhani’s Curve Counting and Geodesic Currents

Mirzakhani’s Curve Counting and Geodesic Currents PDF Author: Viveka Erlandsson
Publisher: Springer Nature
ISBN: 3031087054
Category : Mathematics
Languages : en
Pages : 233

Book Description
This monograph presents an approachable proof of Mirzakhani’s curve counting theorem, both for simple and non-simple curves. Designed to welcome readers to the area, the presentation builds intuition with elementary examples before progressing to rigorous proofs. This approach illuminates new and established results alike, and produces versatile tools for studying the geometry of hyperbolic surfaces, Teichmüller theory, and mapping class groups. Beginning with the preliminaries of curves and arcs on surfaces, the authors go on to present the theory of geodesic currents in detail. Highlights include a treatment of cusped surfaces and surfaces with boundary, along with a comprehensive discussion of the action of the mapping class group on the space of geodesic currents. A user-friendly account of train tracks follows, providing the foundation for radallas, an immersed variation. From here, the authors apply these tools to great effect, offering simplified proofs of existing results and a new, more general proof of Mirzakhani’s curve counting theorem. Further applications include counting square-tiled surfaces and mapping class group orbits, and investigating random geometric structures. Mirzakhani’s Curve Counting and Geodesic Currents introduces readers to powerful counting techniques for the study of surfaces. Ideal for graduate students and researchers new to the area, the pedagogical approach, conversational style, and illuminating illustrations bring this exciting field to life. Exercises offer opportunities to engage with the material throughout. Basic familiarity with 2-dimensional topology and hyperbolic geometry, measured laminations, and the mapping class group is assumed.

Mirzakhani’s Curve Counting and Geodesic Currents

Mirzakhani’s Curve Counting and Geodesic Currents PDF Author: Viveka Erlandsson
Publisher: Springer Nature
ISBN: 3031087054
Category : Mathematics
Languages : en
Pages : 233

Book Description
This monograph presents an approachable proof of Mirzakhani’s curve counting theorem, both for simple and non-simple curves. Designed to welcome readers to the area, the presentation builds intuition with elementary examples before progressing to rigorous proofs. This approach illuminates new and established results alike, and produces versatile tools for studying the geometry of hyperbolic surfaces, Teichmüller theory, and mapping class groups. Beginning with the preliminaries of curves and arcs on surfaces, the authors go on to present the theory of geodesic currents in detail. Highlights include a treatment of cusped surfaces and surfaces with boundary, along with a comprehensive discussion of the action of the mapping class group on the space of geodesic currents. A user-friendly account of train tracks follows, providing the foundation for radallas, an immersed variation. From here, the authors apply these tools to great effect, offering simplified proofs of existing results and a new, more general proof of Mirzakhani’s curve counting theorem. Further applications include counting square-tiled surfaces and mapping class group orbits, and investigating random geometric structures. Mirzakhani’s Curve Counting and Geodesic Currents introduces readers to powerful counting techniques for the study of surfaces. Ideal for graduate students and researchers new to the area, the pedagogical approach, conversational style, and illuminating illustrations bring this exciting field to life. Exercises offer opportunities to engage with the material throughout. Basic familiarity with 2-dimensional topology and hyperbolic geometry, measured laminations, and the mapping class group is assumed.

Mirzakhani's Curve Counting and Geodesic Currents

Mirzakhani's Curve Counting and Geodesic Currents PDF Author: Viveka Erlandsson
Publisher:
ISBN: 9783031087066
Category : Curves
Languages : en
Pages : 0

Book Description


In the Tradition of Thurston III

In the Tradition of Thurston III PDF Author: Ken’ichi Ohshika
Publisher: Springer Nature
ISBN: 3031435028
Category :
Languages : en
Pages : 456

Book Description


In the Tradition of Thurston

In the Tradition of Thurston PDF Author: Ken’ichi Ohshika
Publisher: Springer Nature
ISBN: 3030559289
Category : Mathematics
Languages : en
Pages : 724

Book Description
This book consists of 16 surveys on Thurston's work and its later development. The authors are mathematicians who were strongly influenced by Thurston's publications and ideas. The subjects discussed include, among others, knot theory, the topology of 3-manifolds, circle packings, complex projective structures, hyperbolic geometry, Kleinian groups, foliations, mapping class groups, Teichmüller theory, anti-de Sitter geometry, and co-Minkowski geometry. The book is addressed to researchers and students who want to learn about Thurston’s wide-ranging mathematical ideas and their impact. At the same time, it is a tribute to Thurston, one of the greatest geometers of all time, whose work extended over many fields in mathematics and who had a unique way of perceiving forms and patterns, and of communicating and writing mathematics.

Moduli Spaces of Riemann Surfaces

Moduli Spaces of Riemann Surfaces PDF Author: Benson Farb
Publisher: American Mathematical Soc.
ISBN: 0821898876
Category : Mathematics
Languages : en
Pages : 371

Book Description
Mapping class groups and moduli spaces of Riemann surfaces were the topics of the Graduate Summer School at the 2011 IAS/Park City Mathematics Institute. This book presents the nine different lecture series comprising the summer school, covering a selection of topics of current interest. The introductory courses treat mapping class groups and Teichmüller theory. The more advanced courses cover intersection theory on moduli spaces, the dynamics of polygonal billiards and moduli spaces, the stable cohomology of mapping class groups, the structure of Torelli groups, and arithmetic mapping class groups. The courses consist of a set of intensive short lectures offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The book should be a valuable resource for graduate students and researchers interested in the topology, geometry and dynamics of moduli spaces of Riemann surfaces and related topics. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.

Geometry and Spectra of Compact Riemann Surfaces

Geometry and Spectra of Compact Riemann Surfaces PDF Author: Peter Buser
Publisher: Springer Science & Business Media
ISBN: 0817649921
Category : Mathematics
Languages : en
Pages : 473

Book Description
This monograph is a self-contained introduction to the geometry of Riemann Surfaces of constant curvature –1 and their length and eigenvalue spectra. It focuses on two subjects: the geometric theory of compact Riemann surfaces of genus greater than one, and the relationship of the Laplace operator with the geometry of such surfaces. Research workers and graduate students interested in compact Riemann surfaces will find here a number of useful tools and insights to apply to their investigations.

Combinatorics of Train Tracks

Combinatorics of Train Tracks PDF Author: R. C. Penner
Publisher: Princeton University Press
ISBN: 9780691025315
Category : Mathematics
Languages : en
Pages : 236

Book Description
Measured geodesic laminations are a natural generalization of simple closed curves in surfaces, and they play a decisive role in various developments in two-and three-dimensional topology, geometry, and dynamical systems. This book presents a self-contained and comprehensive treatment of the rich combinatorial structure of the space of measured geodesic laminations in a fixed surface. Families of measured geodesic laminations are described by specifying a train track in the surface, and the space of measured geodesic laminations is analyzed by studying properties of train tracks in the surface. The material is developed from first principles, the techniques employed are essentially combinatorial, and only a minimal background is required on the part of the reader. Specifically, familiarity with elementary differential topology and hyperbolic geometry is assumed. The first chapter treats the basic theory of train tracks as discovered by W. P. Thurston, including recurrence, transverse recurrence, and the explicit construction of a measured geodesic lamination from a measured train track. The subsequent chapters develop certain material from R. C. Penner's thesis, including a natural equivalence relation on measured train tracks and standard models for the equivalence classes (which are used to analyze the topology and geometry of the space of measured geodesic laminations), a duality between transverse and tangential structures on a train track, and the explicit computation of the action of the mapping class group on the space of measured geodesic laminations in the surface.

The Geometry and Topology of Three-Manifolds

The Geometry and Topology of Three-Manifolds PDF Author: William P. Thurston
Publisher: American Mathematical Society
ISBN: 1470474743
Category : Mathematics
Languages : en
Pages : 337

Book Description
William Thurston's work has had a profound influence on mathematics. He connected whole mathematical subjects in entirely new ways and changed the way mathematicians think about geometry, topology, foliations, group theory, dynamical systems, and the way these areas interact. His emphasis on understanding and imagination in mathematical learning and thinking are integral elements of his distinctive legacy. This four-part collection brings together in one place Thurston's major writings, many of which are appearing in publication for the first time. Volumes I–III contain commentaries by the Editors. Volume IV includes a preface by Steven P. Kerckhoff. Volume IV contains Thurston's highly influential, though previously unpublished, 1977–78 Princeton Course Notes on the Geometry and Topology of 3-manifolds. It is an indispensable part of the Thurston collection but can also be used on its own as a textbook or for self-study.

Quantum Triangulations

Quantum Triangulations PDF Author: Mauro Carfora
Publisher: Springer Science & Business Media
ISBN: 3642244394
Category : Science
Languages : en
Pages : 298

Book Description
Research on polyhedral manifolds often points to unexpected connections between very distinct aspects of Mathematics and Physics. In particular triangulated manifolds play quite a distinguished role in such settings as Riemann moduli space theory, strings and quantum gravity, topological quantum field theory, condensed matter physics, and critical phenomena. Not only do they provide a natural discrete analogue to the smooth manifolds on which physical theories are typically formulated, but their appearance is rather often a consequence of an underlying structure which naturally calls into play non-trivial aspects of representation theory, of complex analysis and topology in a way which makes manifest the basic geometric structures of the physical interactions involved. Yet, in most of the existing literature, triangulated manifolds are still merely viewed as a convenient discretization of a given physical theory to make it more amenable for numerical treatment. The motivation for these lectures notes is thus to provide an approachable introduction to this topic, emphasizing the conceptual aspects, and probing, through a set of cases studies, the connection between triangulated manifolds and quantum physics to the deepest. This volume addresses applied mathematicians and theoretical physicists working in the field of quantum geometry and its applications.

Geometry, Topology, and Dynamics

Geometry, Topology, and Dynamics PDF Author: François Lalonde
Publisher: American Mathematical Soc.
ISBN: 082180877X
Category : Mathematics
Languages : en
Pages : 158

Book Description
This is a collection of papers written by leading experts. They are all clear, comprehensive, and origianl. The volume covers a complete range of exciting and new developments in symplectic and contact geometries.