Author: AEIPRO
Publisher: Asociación Española de Dirección e Ingeniería de Proyectos (AEIPRO)
ISBN:
Category :
Languages : en
Pages : 268
Book Description
Libro de resúmenes del XX Congreso Internacional de Dirección e Ingeniería de Proyectos (CIDIP 2016)
20th International Congress on Project Management and Engineering
Data Mining With Decision Trees: Theory And Applications (2nd Edition)
Author: Oded Z Maimon
Publisher: World Scientific
ISBN: 9814590096
Category : Computers
Languages : en
Pages : 328
Book Description
Decision trees have become one of the most powerful and popular approaches in knowledge discovery and data mining; it is the science of exploring large and complex bodies of data in order to discover useful patterns. Decision tree learning continues to evolve over time. Existing methods are constantly being improved and new methods introduced.This 2nd Edition is dedicated entirely to the field of decision trees in data mining; to cover all aspects of this important technique, as well as improved or new methods and techniques developed after the publication of our first edition. In this new edition, all chapters have been revised and new topics brought in. New topics include Cost-Sensitive Active Learning, Learning with Uncertain and Imbalanced Data, Using Decision Trees beyond Classification Tasks, Privacy Preserving Decision Tree Learning, Lessons Learned from Comparative Studies, and Learning Decision Trees for Big Data. A walk-through guide to existing open-source data mining software is also included in this edition.This book invites readers to explore the many benefits in data mining that decision trees offer:
Publisher: World Scientific
ISBN: 9814590096
Category : Computers
Languages : en
Pages : 328
Book Description
Decision trees have become one of the most powerful and popular approaches in knowledge discovery and data mining; it is the science of exploring large and complex bodies of data in order to discover useful patterns. Decision tree learning continues to evolve over time. Existing methods are constantly being improved and new methods introduced.This 2nd Edition is dedicated entirely to the field of decision trees in data mining; to cover all aspects of this important technique, as well as improved or new methods and techniques developed after the publication of our first edition. In this new edition, all chapters have been revised and new topics brought in. New topics include Cost-Sensitive Active Learning, Learning with Uncertain and Imbalanced Data, Using Decision Trees beyond Classification Tasks, Privacy Preserving Decision Tree Learning, Lessons Learned from Comparative Studies, and Learning Decision Trees for Big Data. A walk-through guide to existing open-source data mining software is also included in this edition.This book invites readers to explore the many benefits in data mining that decision trees offer:
Data Mining With Decision Trees: Theory And Applications
Author: Lior Rokach
Publisher: World Scientific
ISBN: 9814474185
Category : Computers
Languages : en
Pages : 263
Book Description
This is the first comprehensive book dedicated entirely to the field of decision trees in data mining and covers all aspects of this important technique.Decision trees have become one of the most powerful and popular approaches in knowledge discovery and data mining, the science and technology of exploring large and complex bodies of data in order to discover useful patterns. The area is of great importance because it enables modeling and knowledge extraction from the abundance of data available. Both theoreticians and practitioners are continually seeking techniques to make the process more efficient, cost-effective and accurate. Decision trees, originally implemented in decision theory and statistics, are highly effective tools in other areas such as data mining, text mining, information extraction, machine learning, and pattern recognition. This book invites readers to explore the many benefits in data mining that decision trees offer:
Publisher: World Scientific
ISBN: 9814474185
Category : Computers
Languages : en
Pages : 263
Book Description
This is the first comprehensive book dedicated entirely to the field of decision trees in data mining and covers all aspects of this important technique.Decision trees have become one of the most powerful and popular approaches in knowledge discovery and data mining, the science and technology of exploring large and complex bodies of data in order to discover useful patterns. The area is of great importance because it enables modeling and knowledge extraction from the abundance of data available. Both theoreticians and practitioners are continually seeking techniques to make the process more efficient, cost-effective and accurate. Decision trees, originally implemented in decision theory and statistics, are highly effective tools in other areas such as data mining, text mining, information extraction, machine learning, and pattern recognition. This book invites readers to explore the many benefits in data mining that decision trees offer:
Proactive Data Mining with Decision Trees
Author: Haim Dahan
Publisher: Springer Science & Business Media
ISBN: 1493905392
Category : Computers
Languages : en
Pages : 94
Book Description
This book explores a proactive and domain-driven method to classification tasks. This novel proactive approach to data mining not only induces a model for predicting or explaining a phenomenon, but also utilizes specific problem/domain knowledge to suggest specific actions to achieve optimal changes in the value of the target attribute. In particular, the authors suggest a specific implementation of the domain-driven proactive approach for classification trees. The book centers on the core idea of moving observations from one branch of the tree to another. It introduces a novel splitting criterion for decision trees, termed maximal-utility, which maximizes the potential for enhancing profitability in the output tree. Two real-world case studies, one of a leading wireless operator and the other of a major security company, are also included and demonstrate how applying the proactive approach to classification tasks can solve business problems. Proactive Data Mining with Decision Trees is intended for researchers, practitioners and advanced-level students.
Publisher: Springer Science & Business Media
ISBN: 1493905392
Category : Computers
Languages : en
Pages : 94
Book Description
This book explores a proactive and domain-driven method to classification tasks. This novel proactive approach to data mining not only induces a model for predicting or explaining a phenomenon, but also utilizes specific problem/domain knowledge to suggest specific actions to achieve optimal changes in the value of the target attribute. In particular, the authors suggest a specific implementation of the domain-driven proactive approach for classification trees. The book centers on the core idea of moving observations from one branch of the tree to another. It introduces a novel splitting criterion for decision trees, termed maximal-utility, which maximizes the potential for enhancing profitability in the output tree. Two real-world case studies, one of a leading wireless operator and the other of a major security company, are also included and demonstrate how applying the proactive approach to classification tasks can solve business problems. Proactive Data Mining with Decision Trees is intended for researchers, practitioners and advanced-level students.
Data Mining with Neural Networks
Author: Joseph P. Bigus
Publisher: McGraw-Hill Companies
ISBN:
Category : Business & Economics
Languages : en
Pages : 248
Book Description
readers will find concrete implementation strategies, reinforced with real-world business examples and a minimum of formulas, and case studies drawn from a broad range of industries. The book illustrates the popular data mining functions of classification, clustering, modeling, and time-series forecasting--through examples developed using the IBM Neural Network Utility.
Publisher: McGraw-Hill Companies
ISBN:
Category : Business & Economics
Languages : en
Pages : 248
Book Description
readers will find concrete implementation strategies, reinforced with real-world business examples and a minimum of formulas, and case studies drawn from a broad range of industries. The book illustrates the popular data mining functions of classification, clustering, modeling, and time-series forecasting--through examples developed using the IBM Neural Network Utility.
Applications of Machine Learning
Author: Prashant Johri
Publisher: Springer Nature
ISBN: 9811533571
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics.
Publisher: Springer Nature
ISBN: 9811533571
Category : Technology & Engineering
Languages : en
Pages : 404
Book Description
This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics.
Data Mining and Decision Support
Author: Dunja Mladenic
Publisher: Springer Science & Business Media
ISBN: 1461502861
Category : Computers
Languages : en
Pages : 284
Book Description
Data mining deals with finding patterns in data that are by user-definition, interesting and valid. It is an interdisciplinary area involving databases, machine learning, pattern recognition, statistics, visualization and others. Decision support focuses on developing systems to help decision-makers solve problems. Decision support provides a selection of data analysis, simulation, visualization and modeling techniques, and software tools such as decision support systems, group decision support and mediation systems, expert systems, databases and data warehouses. Independently, data mining and decision support are well-developed research areas, but until now there has been no systematic attempt to integrate them. Data Mining and Decision Support: Integration and Collaboration, written by leading researchers in the field, presents a conceptual framework, plus the methods and tools for integrating the two disciplines and for applying this technology to business problems in a collaborative setting.
Publisher: Springer Science & Business Media
ISBN: 1461502861
Category : Computers
Languages : en
Pages : 284
Book Description
Data mining deals with finding patterns in data that are by user-definition, interesting and valid. It is an interdisciplinary area involving databases, machine learning, pattern recognition, statistics, visualization and others. Decision support focuses on developing systems to help decision-makers solve problems. Decision support provides a selection of data analysis, simulation, visualization and modeling techniques, and software tools such as decision support systems, group decision support and mediation systems, expert systems, databases and data warehouses. Independently, data mining and decision support are well-developed research areas, but until now there has been no systematic attempt to integrate them. Data Mining and Decision Support: Integration and Collaboration, written by leading researchers in the field, presents a conceptual framework, plus the methods and tools for integrating the two disciplines and for applying this technology to business problems in a collaborative setting.
Foundations and Advances in Data Mining
Author: Wesley Chu
Publisher: Springer Science & Business Media
ISBN: 9783540250579
Category : Computers
Languages : en
Pages : 360
Book Description
With the growing use of information technology and the recent advances in web systems, the amount of data available to users has increased exponentially. Thus, there is a critical need to understand the content of the data. As a result, data-mining has become a popular research topic in recent years for the treatment of the "data rich and information poor" syndrome. In this carefully edited volume a theoretical foundation as well as important new directions for data-mining research are presented. It brings together a set of well respected data mining theoreticians and researchers with practical data mining experiences. The presented theories will give data mining practitioners a scientific perspective in data mining and thus provide more insight into their problems, and the provided new data mining topics can be expected to stimulate further research in these important directions.
Publisher: Springer Science & Business Media
ISBN: 9783540250579
Category : Computers
Languages : en
Pages : 360
Book Description
With the growing use of information technology and the recent advances in web systems, the amount of data available to users has increased exponentially. Thus, there is a critical need to understand the content of the data. As a result, data-mining has become a popular research topic in recent years for the treatment of the "data rich and information poor" syndrome. In this carefully edited volume a theoretical foundation as well as important new directions for data-mining research are presented. It brings together a set of well respected data mining theoreticians and researchers with practical data mining experiences. The presented theories will give data mining practitioners a scientific perspective in data mining and thus provide more insight into their problems, and the provided new data mining topics can be expected to stimulate further research in these important directions.
Data Mining and Knowledge Management
Author: Yong Shi
Publisher: Springer Science & Business Media
ISBN: 3540239871
Category : Computers
Languages : en
Pages : 275
Book Description
criteria linear and nonlinear programming has proven to be a very useful approach. • Knowledge management for enterprise: These papers address various issues related to the application of knowledge management in corporations using various techniques. A particular emphasis here is on coordination and cooperation. • Risk management: Better knowledge management also requires more advanced techniques for risk management, to identify, control, and minimize the impact of uncertain events, as shown in these papers, using fuzzy set theory and other approaches for better risk management. • Integration of data mining and knowledge management: As indicated earlier, the integration of these two research fields is still in the early stage. Nevertheless, as shown in the papers selected in this volume, researchers have endearored to integrate data mining methods such as neural networks with various aspects related to knowledge management, such as decision support systems and expert systems, for better knowledge management. September 2004 Yong Shi Weixuan Xu Zhengxin Chen CASDMKM 2004 Organization Hosted by Institute of Policy and Management at the Chinese Academy of Sciences Graduate School of the Chinese Academy of Sciences International Journal of Information Technology and Decision Making Sponsored by Chinese Academy of Sciences National Natural Science Foundation of China University of Nebraska at Omaha, USA Conference Chairs Weixuan Xu, Chinese Academy of Sciences, China Yong Shi, University of Nebraska at Omaha, USA Advisory Committee
Publisher: Springer Science & Business Media
ISBN: 3540239871
Category : Computers
Languages : en
Pages : 275
Book Description
criteria linear and nonlinear programming has proven to be a very useful approach. • Knowledge management for enterprise: These papers address various issues related to the application of knowledge management in corporations using various techniques. A particular emphasis here is on coordination and cooperation. • Risk management: Better knowledge management also requires more advanced techniques for risk management, to identify, control, and minimize the impact of uncertain events, as shown in these papers, using fuzzy set theory and other approaches for better risk management. • Integration of data mining and knowledge management: As indicated earlier, the integration of these two research fields is still in the early stage. Nevertheless, as shown in the papers selected in this volume, researchers have endearored to integrate data mining methods such as neural networks with various aspects related to knowledge management, such as decision support systems and expert systems, for better knowledge management. September 2004 Yong Shi Weixuan Xu Zhengxin Chen CASDMKM 2004 Organization Hosted by Institute of Policy and Management at the Chinese Academy of Sciences Graduate School of the Chinese Academy of Sciences International Journal of Information Technology and Decision Making Sponsored by Chinese Academy of Sciences National Natural Science Foundation of China University of Nebraska at Omaha, USA Conference Chairs Weixuan Xu, Chinese Academy of Sciences, China Yong Shi, University of Nebraska at Omaha, USA Advisory Committee
Advanced Data Mining and Applications
Author: Longbing Cao
Publisher: Springer Science & Business Media
ISBN: 3642173128
Category : Computers
Languages : en
Pages : 589
Book Description
This book constitutes the refereed proceedings of the 6th International Conference on Advanced Data Mining and Applications, ADMA 2010, held in Chongqing, China, in November 2010. 63 carefully reviewed regular papers and 55 revised short papers were presented. The papers are organized in topical sections on data mining foundations; data mining in specific areas; data mining methodologies and processes; and data mining applications and systems.
Publisher: Springer Science & Business Media
ISBN: 3642173128
Category : Computers
Languages : en
Pages : 589
Book Description
This book constitutes the refereed proceedings of the 6th International Conference on Advanced Data Mining and Applications, ADMA 2010, held in Chongqing, China, in November 2010. 63 carefully reviewed regular papers and 55 revised short papers were presented. The papers are organized in topical sections on data mining foundations; data mining in specific areas; data mining methodologies and processes; and data mining applications and systems.