Author: Manoj Gupta
Publisher: John Wiley & Sons
ISBN: 0470822732
Category : Technology & Engineering
Languages : en
Pages : 242
Book Description
Using microwaves to treat metal-based materials is rapidly emerging as an energy-efficient tool to interact with metals for a number of processes such as sintering, melting, brazing, carburizing and annealing. Microwaves can sinter a wide variety of metal compacts with comparable or enhanced end properties, while at the same time delivering tremendous energy savings over conventional sintering. Microwave processes are therefore gaining increasing attention and adoption in both academia and industry. Gupta and Wong have written this comprehensive text to introduce readers to the world of microwaves and the interaction of microwaves with metals and metals-based formulations. The authors have combined numerous research results from a wide range of sources alongside their own work in the field. Also included are overviews of microwave heating of other non-metal materials and the equipment used for microwave-assisted metallurgy. With microwave techniques poised for widespread adoption, Microwaves and Metals is an essential text for all metallurgists and materials engineers. Provides a thorough grounding in microwave fundamentals and their application to metals processing Informs readers of the latest developments in the field Presents a convenient single source for all aspects of microwave processing of metals and materials Contains liberal illustration to compare and benchmark research results Introduces all the necessary equipment, preparing readers for real-world practice Microwaves and Metals is ideal for a post-graduate or advanced undergraduate course in materials science or metallurgy. Materials and metallurgical engineers in industry, who are keen on cheaper, faster techniques, will also benefit from this book.
Microwaves and Metals
Author: Manoj Gupta
Publisher: John Wiley & Sons
ISBN: 0470822732
Category : Technology & Engineering
Languages : en
Pages : 242
Book Description
Using microwaves to treat metal-based materials is rapidly emerging as an energy-efficient tool to interact with metals for a number of processes such as sintering, melting, brazing, carburizing and annealing. Microwaves can sinter a wide variety of metal compacts with comparable or enhanced end properties, while at the same time delivering tremendous energy savings over conventional sintering. Microwave processes are therefore gaining increasing attention and adoption in both academia and industry. Gupta and Wong have written this comprehensive text to introduce readers to the world of microwaves and the interaction of microwaves with metals and metals-based formulations. The authors have combined numerous research results from a wide range of sources alongside their own work in the field. Also included are overviews of microwave heating of other non-metal materials and the equipment used for microwave-assisted metallurgy. With microwave techniques poised for widespread adoption, Microwaves and Metals is an essential text for all metallurgists and materials engineers. Provides a thorough grounding in microwave fundamentals and their application to metals processing Informs readers of the latest developments in the field Presents a convenient single source for all aspects of microwave processing of metals and materials Contains liberal illustration to compare and benchmark research results Introduces all the necessary equipment, preparing readers for real-world practice Microwaves and Metals is ideal for a post-graduate or advanced undergraduate course in materials science or metallurgy. Materials and metallurgical engineers in industry, who are keen on cheaper, faster techniques, will also benefit from this book.
Publisher: John Wiley & Sons
ISBN: 0470822732
Category : Technology & Engineering
Languages : en
Pages : 242
Book Description
Using microwaves to treat metal-based materials is rapidly emerging as an energy-efficient tool to interact with metals for a number of processes such as sintering, melting, brazing, carburizing and annealing. Microwaves can sinter a wide variety of metal compacts with comparable or enhanced end properties, while at the same time delivering tremendous energy savings over conventional sintering. Microwave processes are therefore gaining increasing attention and adoption in both academia and industry. Gupta and Wong have written this comprehensive text to introduce readers to the world of microwaves and the interaction of microwaves with metals and metals-based formulations. The authors have combined numerous research results from a wide range of sources alongside their own work in the field. Also included are overviews of microwave heating of other non-metal materials and the equipment used for microwave-assisted metallurgy. With microwave techniques poised for widespread adoption, Microwaves and Metals is an essential text for all metallurgists and materials engineers. Provides a thorough grounding in microwave fundamentals and their application to metals processing Informs readers of the latest developments in the field Presents a convenient single source for all aspects of microwave processing of metals and materials Contains liberal illustration to compare and benchmark research results Introduces all the necessary equipment, preparing readers for real-world practice Microwaves and Metals is ideal for a post-graduate or advanced undergraduate course in materials science or metallurgy. Materials and metallurgical engineers in industry, who are keen on cheaper, faster techniques, will also benefit from this book.
Sintering of Advanced Materials
Author: Zhigang Zak Fang
Publisher: Elsevier
ISBN: 1845699947
Category : Technology & Engineering
Languages : en
Pages : 502
Book Description
Sintering is a method for manufacturing components from ceramic or metal powders by heating the powder until the particles adhere to form the component required. The resulting products are characterised by an enhanced density and strength, and are used in a wide range of industries. Sintering of advanced materials: fundamentals and processes reviews important developments in this technology and its applicationsPart one discusses the fundamentals of sintering with chapters on topics such as the thermodynamics of sintering, kinetics and mechanisms of densification, the kinetics of microstructural change and liquid phase sintering. Part two reviews advanced sintering processes including atmospheric sintering, vacuum sintering, microwave sintering, field/current assisted sintering and photonic sintering. Finally, Part three covers sintering of aluminium, titanium and their alloys, refractory metals, ultrahard materials, thin films, ultrafine and nanosized particles for advanced materials.With its distinguished editor and international team of contributors, Sintering of advanced materials: fundamentals and processes reviews the latest advances in sintering and is a standard reference for researchers and engineers involved in the processing of ceramics, powder metallurgy, net-shape manufacturing and those using advanced materials in such sectors as electronics, automotive and aerospace engineering. - Explores the thermodynamics of sintering including sinter bonding and densification - Chapters review a variety of sintering methods including atmosphere, vacuum, liquid phase and microwave sintering - Discusses sintering of a variety of materials featuring refractory metals, super hard materials and functionally graded materials
Publisher: Elsevier
ISBN: 1845699947
Category : Technology & Engineering
Languages : en
Pages : 502
Book Description
Sintering is a method for manufacturing components from ceramic or metal powders by heating the powder until the particles adhere to form the component required. The resulting products are characterised by an enhanced density and strength, and are used in a wide range of industries. Sintering of advanced materials: fundamentals and processes reviews important developments in this technology and its applicationsPart one discusses the fundamentals of sintering with chapters on topics such as the thermodynamics of sintering, kinetics and mechanisms of densification, the kinetics of microstructural change and liquid phase sintering. Part two reviews advanced sintering processes including atmospheric sintering, vacuum sintering, microwave sintering, field/current assisted sintering and photonic sintering. Finally, Part three covers sintering of aluminium, titanium and their alloys, refractory metals, ultrahard materials, thin films, ultrafine and nanosized particles for advanced materials.With its distinguished editor and international team of contributors, Sintering of advanced materials: fundamentals and processes reviews the latest advances in sintering and is a standard reference for researchers and engineers involved in the processing of ceramics, powder metallurgy, net-shape manufacturing and those using advanced materials in such sectors as electronics, automotive and aerospace engineering. - Explores the thermodynamics of sintering including sinter bonding and densification - Chapters review a variety of sintering methods including atmosphere, vacuum, liquid phase and microwave sintering - Discusses sintering of a variety of materials featuring refractory metals, super hard materials and functionally graded materials
Composite Materials Processing Using Microwave Heating Technology
Author: Manoj Kumar Singh
Publisher: Springer Nature
ISBN: 9819727723
Category :
Languages : en
Pages : 292
Book Description
Publisher: Springer Nature
ISBN: 9819727723
Category :
Languages : en
Pages : 292
Book Description
Advances in Microwave Processing for Engineering Materials
Author: Amit Bansal
Publisher: CRC Press
ISBN: 100068833X
Category : Technology & Engineering
Languages : en
Pages : 226
Book Description
This text discusses recent research techniques in the field of microwave processing of engineering materials by utilizing microwave radiation in the form of microwave hybrid heating (MHH). It is useful for industrial and household applications including the joining of materials, casting of bulk metal alloy material, drilling of borosilicate glass materials, development of cladding of different materials for friction, wear, and corrosion. The book: Discusses the development of high-temperature resistant materials using microwave processing Covers the latest research development in microwave processing in the field of healthcare i.e. bio-medical implants Highlights concepts of microwave heating in joining, cladding, and casting of metallic materials Explains mechanisms of failure of materials and protection in a comprehensive manner Provide readers the knowledge of microwave processing of materials in major thrust areas of engineering applications This book extensively highlights the latest advances in the field of microwave processing for engineering materials. It will serve as an ideal reference text for graduate students and academic researchers in the fields of materials science, manufacturing engineering, industrial engineering, mechanical engineering, and production engineering.
Publisher: CRC Press
ISBN: 100068833X
Category : Technology & Engineering
Languages : en
Pages : 226
Book Description
This text discusses recent research techniques in the field of microwave processing of engineering materials by utilizing microwave radiation in the form of microwave hybrid heating (MHH). It is useful for industrial and household applications including the joining of materials, casting of bulk metal alloy material, drilling of borosilicate glass materials, development of cladding of different materials for friction, wear, and corrosion. The book: Discusses the development of high-temperature resistant materials using microwave processing Covers the latest research development in microwave processing in the field of healthcare i.e. bio-medical implants Highlights concepts of microwave heating in joining, cladding, and casting of metallic materials Explains mechanisms of failure of materials and protection in a comprehensive manner Provide readers the knowledge of microwave processing of materials in major thrust areas of engineering applications This book extensively highlights the latest advances in the field of microwave processing for engineering materials. It will serve as an ideal reference text for graduate students and academic researchers in the fields of materials science, manufacturing engineering, industrial engineering, mechanical engineering, and production engineering.
Microwave Chemical and Materials Processing
Author: Satoshi Horikoshi
Publisher: Springer
ISBN: 9811064660
Category : Science
Languages : en
Pages : 402
Book Description
The principal aim of this book is to introduce chemists through a tutorial approach to the use of microwaves by examining several experiments of microwave chemistry and materials processing. It will subsequently enable chemists to fashion their own experiments in microwave chemistry or materials processing. Microwave heating has become a popular methodology in introducing thermal energy in chemical reactions and material processing in laboratory-scale experiments. Several research cases where microwave heating has been used in a wide range of fields have been reported, including organic synthesis, polymers, nanomaterials, biomaterials, and ceramic sintering, among others. In most cases, microwave equipment is used as a simple heat source. Therefore the principal benefits of microwave radiation have seldom been taken advantage of. One reason is the necessity to understand the nature of electromagnetism, microwave engineering, and thermodynamics. However, it is difficult for a chemist to appreciate these in a short time, so they act as barriers for the chemist who might take an interest in the use of microwave radiation. This book helps to overcome these barriers by using figures and diagrams instead of equations as much as possible.
Publisher: Springer
ISBN: 9811064660
Category : Science
Languages : en
Pages : 402
Book Description
The principal aim of this book is to introduce chemists through a tutorial approach to the use of microwaves by examining several experiments of microwave chemistry and materials processing. It will subsequently enable chemists to fashion their own experiments in microwave chemistry or materials processing. Microwave heating has become a popular methodology in introducing thermal energy in chemical reactions and material processing in laboratory-scale experiments. Several research cases where microwave heating has been used in a wide range of fields have been reported, including organic synthesis, polymers, nanomaterials, biomaterials, and ceramic sintering, among others. In most cases, microwave equipment is used as a simple heat source. Therefore the principal benefits of microwave radiation have seldom been taken advantage of. One reason is the necessity to understand the nature of electromagnetism, microwave engineering, and thermodynamics. However, it is difficult for a chemist to appreciate these in a short time, so they act as barriers for the chemist who might take an interest in the use of microwave radiation. This book helps to overcome these barriers by using figures and diagrams instead of equations as much as possible.
Microwave Processing of Materials
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309050278
Category : Technology & Engineering
Languages : en
Pages : 165
Book Description
Microwaves can be effectively used in the processing of industrial materials under a wide range of conditions. However, microwave processing is complex and multidisciplinary in nature, and a high degree of technical knowledge is needed to determine how, when, and where the technology can be most profitably utilized. This book assesses the potential of microwave technology for industrial applications, reviews the latest equipment and processing methods, and identifies both the gaps in understanding of microwave processing technology and the promising development opportunities that take advantage of this new technology's unique performance characteristics.
Publisher: National Academies Press
ISBN: 0309050278
Category : Technology & Engineering
Languages : en
Pages : 165
Book Description
Microwaves can be effectively used in the processing of industrial materials under a wide range of conditions. However, microwave processing is complex and multidisciplinary in nature, and a high degree of technical knowledge is needed to determine how, when, and where the technology can be most profitably utilized. This book assesses the potential of microwave technology for industrial applications, reviews the latest equipment and processing methods, and identifies both the gaps in understanding of microwave processing technology and the promising development opportunities that take advantage of this new technology's unique performance characteristics.
Industrial Microwave Heating
Author: A. C. Metaxas
Publisher: IET
ISBN: 9780906048894
Category : Technology & Engineering
Languages : en
Pages : 380
Book Description
This book offers a broad coverage of the theory and practice of industrial microwave heating. It introduces the physical processes behind dipolar and conductivity loss mechanisms and follows with a thorough presentation of dielectric property data of many industrial materials as a function of the moisture content, temperature and frequency, focussing on the interpretation of such data as regards the suitabiliy for processing these materials with microwave energy. The basic equations which govern the power dissipation, attenuation, phase constant, penetration depth and skin depth are derived from first principles while the transport equations of heat, mass and pressure are qualitatively described, giving particular emphasis to the physical mechanisms behind high frequency drying. The book provides established procedures backed by theoretical formulations for the design of industrial travelling wave and multimode applicators. It also provides extensive coverage of single mode fundamental or higher order resonant cavities and outlines a number of atypical applicator structures. It describes the essential features of processing with microwaves under vacuum and presents a brief introduction to the mechanisms which lead to gas breakdown. It stresses the need for a degree of hybridisation with other electrical or conventional heating systems and discusses a few such schemes. The book outlines a number of systems for limiting leakage from on-line industrial microwave systems and concludes with an extensive discussion of successful industrial applications.
Publisher: IET
ISBN: 9780906048894
Category : Technology & Engineering
Languages : en
Pages : 380
Book Description
This book offers a broad coverage of the theory and practice of industrial microwave heating. It introduces the physical processes behind dipolar and conductivity loss mechanisms and follows with a thorough presentation of dielectric property data of many industrial materials as a function of the moisture content, temperature and frequency, focussing on the interpretation of such data as regards the suitabiliy for processing these materials with microwave energy. The basic equations which govern the power dissipation, attenuation, phase constant, penetration depth and skin depth are derived from first principles while the transport equations of heat, mass and pressure are qualitatively described, giving particular emphasis to the physical mechanisms behind high frequency drying. The book provides established procedures backed by theoretical formulations for the design of industrial travelling wave and multimode applicators. It also provides extensive coverage of single mode fundamental or higher order resonant cavities and outlines a number of atypical applicator structures. It describes the essential features of processing with microwaves under vacuum and presents a brief introduction to the mechanisms which lead to gas breakdown. It stresses the need for a degree of hybridisation with other electrical or conventional heating systems and discusses a few such schemes. The book outlines a number of systems for limiting leakage from on-line industrial microwave systems and concludes with an extensive discussion of successful industrial applications.
Characterization of Minerals, Metals, and Materials 2015
Author: John Carpenter
Publisher: Springer
ISBN: 3319481916
Category : Technology & Engineering
Languages : en
Pages : 773
Book Description
This collection focuses on the characterization of minerals, metals, and materials as well as the application of characterization results on the processing of these materials. Papers cover topics such as clays, ceramics, composites, ferrous metals, non-ferrous metals, minerals, electronic materials, magnetic materials, environmental materials, advanced materials, and soft materials. In addition, papers covering materials extraction, materials processing, corrosion, welding, solidification, and method development are included. This book provides a current snapshot of characterization in materials science and its role in validating, informing, and driving current theories in the field of materials science. This volume will serve the dual purpose of furnishing a broad introduction of the field to novices while simultaneously serving to keep subject matter experts up-to-date.
Publisher: Springer
ISBN: 3319481916
Category : Technology & Engineering
Languages : en
Pages : 773
Book Description
This collection focuses on the characterization of minerals, metals, and materials as well as the application of characterization results on the processing of these materials. Papers cover topics such as clays, ceramics, composites, ferrous metals, non-ferrous metals, minerals, electronic materials, magnetic materials, environmental materials, advanced materials, and soft materials. In addition, papers covering materials extraction, materials processing, corrosion, welding, solidification, and method development are included. This book provides a current snapshot of characterization in materials science and its role in validating, informing, and driving current theories in the field of materials science. This volume will serve the dual purpose of furnishing a broad introduction of the field to novices while simultaneously serving to keep subject matter experts up-to-date.
Advances in Powder Metallurgy
Author: Isaac Chang
Publisher: Elsevier
ISBN: 085709890X
Category : Technology & Engineering
Languages : en
Pages : 624
Book Description
Powder metallurgy (PM) is a popular metal forming technology used to produce dense and precision components. Different powder and component forming routes can be used to create an end product with specific properties for a particular application or industry. Advances in powder metallurgy explores a range of materials and techniques used for powder metallurgy and the use of this technology across a variety of application areas.Part one discusses the forming and shaping of metal powders and includes chapters on atomisation techniques, electrolysis and plasma synthesis of metallic nanopowders. Part two goes on to highlight specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys. Part three reviews the manufacture and densification of PM components and explores joining techniques, process optimisation in powder component manufacturing and non-destructive evaluation of PM parts. Finally, part four focusses on the applications of PM in the automotive industry and the use of PM in the production of cutting tools and biomaterials.Advances in powder metallurgy is a standard reference for structural engineers and component manufacturers in the metal forming industry, professionals working in industries that use PM components and academics with a research interest in the field. - Discusses the forming and shaping of metal powders and includes chapters on atomisation techniques - Highlights specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys - Reviews the manufacture and densification of PM components and explores joining techniques
Publisher: Elsevier
ISBN: 085709890X
Category : Technology & Engineering
Languages : en
Pages : 624
Book Description
Powder metallurgy (PM) is a popular metal forming technology used to produce dense and precision components. Different powder and component forming routes can be used to create an end product with specific properties for a particular application or industry. Advances in powder metallurgy explores a range of materials and techniques used for powder metallurgy and the use of this technology across a variety of application areas.Part one discusses the forming and shaping of metal powders and includes chapters on atomisation techniques, electrolysis and plasma synthesis of metallic nanopowders. Part two goes on to highlight specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys. Part three reviews the manufacture and densification of PM components and explores joining techniques, process optimisation in powder component manufacturing and non-destructive evaluation of PM parts. Finally, part four focusses on the applications of PM in the automotive industry and the use of PM in the production of cutting tools and biomaterials.Advances in powder metallurgy is a standard reference for structural engineers and component manufacturers in the metal forming industry, professionals working in industries that use PM components and academics with a research interest in the field. - Discusses the forming and shaping of metal powders and includes chapters on atomisation techniques - Highlights specific materials and their properties including advanced powdered steel alloys, porous metals and titanium alloys - Reviews the manufacture and densification of PM components and explores joining techniques
Microwaves in Catalysis
Author: Satoshi Horikoshi
Publisher: John Wiley & Sons
ISBN: 3527338152
Category : Science
Languages : en
Pages : 426
Book Description
A comprehensive overview covering the principles and preparation of catalysts, as well as reactor technology and applications in the field of organic synthesis, energy production, and environmental catalysis. Edited and authored by renowned and experienced scientists, this reference focuses on successful reaction procedures for applications in industry. Topics include catalyst preparation, the treatment of waste water and air, biomass and waste valorisation, hydrogen production, oil refining as well as organic synthesis in the presence of heterogeneous and homogeneous catalysts and continuous-flow reactions. With its practical relevance and successful methodologies, this is a valuable guide for chemists at universities working in the field of catalysis, organic synthesis, pharmaceutical or green chemistry, as well as researchers and engineers in the chemical industry.
Publisher: John Wiley & Sons
ISBN: 3527338152
Category : Science
Languages : en
Pages : 426
Book Description
A comprehensive overview covering the principles and preparation of catalysts, as well as reactor technology and applications in the field of organic synthesis, energy production, and environmental catalysis. Edited and authored by renowned and experienced scientists, this reference focuses on successful reaction procedures for applications in industry. Topics include catalyst preparation, the treatment of waste water and air, biomass and waste valorisation, hydrogen production, oil refining as well as organic synthesis in the presence of heterogeneous and homogeneous catalysts and continuous-flow reactions. With its practical relevance and successful methodologies, this is a valuable guide for chemists at universities working in the field of catalysis, organic synthesis, pharmaceutical or green chemistry, as well as researchers and engineers in the chemical industry.