Microbial Symbiosis of Marine Sessile Hosts - Diversity, Function and Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Microbial Symbiosis of Marine Sessile Hosts - Diversity, Function and Applications PDF full book. Access full book title Microbial Symbiosis of Marine Sessile Hosts - Diversity, Function and Applications by Suhelen Egan. Download full books in PDF and EPUB format.

Microbial Symbiosis of Marine Sessile Hosts - Diversity, Function and Applications

Microbial Symbiosis of Marine Sessile Hosts - Diversity, Function and Applications PDF Author: Suhelen Egan
Publisher: Frontiers Media SA
ISBN: 288919681X
Category : Microbiology
Languages : en
Pages : 110

Book Description
Modern molecular -omics tools (metagenomics, metaproteomics etc.) have greatly contributed to the rapid advancement of our understanding of microbial diversity and function in the world’s oceans. These tools are now increasingly applied to host-associated environments to describe the symbiotic microbiome and obtain a holistic view of marine host-microbial interactions. Whilst all eukaryotic hosts are likely to benefit from their microbial associates, marine sessile eukaryotes, including macroalgae, seagrasses and various invertebrates (sponges, acidians, corals, hydroids etc), rely in particular on the function of their microbiome. For example, marine sessile eukaryotes are under constant grazing, colonization and fouling pressure from the millions of micro- and macroorganisms in the surrounding seawater. Host-associated microorganisms have been shown to produce secondary metabolites as defense molecules against unwanted colonization or pathogens, thus having an important function in host health and survival. Similarly microbial symbionts of sessile eukaryotes are often essential players in local nutrient cycling thus benefiting both the host and the surrounding ecosystem. Various research fields have contributed to generating knowledge of host-associated systems, including microbiology, biotechnology, molecular biology, ecology, evolution and biotechnology. Through a focus on model marine sessile host systems we believe that new insight into the interactions between host and microbial symbionts will be obtained and important areas of future research will be identified. This research topic includes original research, review and opinion articles that bring together the knowledge from different aspects of biology and highlight advances in our understanding of the diversity and function of the microbiomes on marine sessile hosts.

Microbial Symbiosis of Marine Sessile Hosts - Diversity, Function and Applications

Microbial Symbiosis of Marine Sessile Hosts - Diversity, Function and Applications PDF Author: Suhelen Egan
Publisher: Frontiers Media SA
ISBN: 288919681X
Category : Microbiology
Languages : en
Pages : 110

Book Description
Modern molecular -omics tools (metagenomics, metaproteomics etc.) have greatly contributed to the rapid advancement of our understanding of microbial diversity and function in the world’s oceans. These tools are now increasingly applied to host-associated environments to describe the symbiotic microbiome and obtain a holistic view of marine host-microbial interactions. Whilst all eukaryotic hosts are likely to benefit from their microbial associates, marine sessile eukaryotes, including macroalgae, seagrasses and various invertebrates (sponges, acidians, corals, hydroids etc), rely in particular on the function of their microbiome. For example, marine sessile eukaryotes are under constant grazing, colonization and fouling pressure from the millions of micro- and macroorganisms in the surrounding seawater. Host-associated microorganisms have been shown to produce secondary metabolites as defense molecules against unwanted colonization or pathogens, thus having an important function in host health and survival. Similarly microbial symbionts of sessile eukaryotes are often essential players in local nutrient cycling thus benefiting both the host and the surrounding ecosystem. Various research fields have contributed to generating knowledge of host-associated systems, including microbiology, biotechnology, molecular biology, ecology, evolution and biotechnology. Through a focus on model marine sessile host systems we believe that new insight into the interactions between host and microbial symbionts will be obtained and important areas of future research will be identified. This research topic includes original research, review and opinion articles that bring together the knowledge from different aspects of biology and highlight advances in our understanding of the diversity and function of the microbiomes on marine sessile hosts.

Microbial Symbiosis of Marine Sessile Hosts - Diversity and Function

Microbial Symbiosis of Marine Sessile Hosts - Diversity and Function PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Modern molecular -omics tools (metagenomics, metaproteomics etc.) have greatly contributed to the rapid advancement of our understanding of microbial diversity and function in the world's oceans. These tools are now increasingly applied to host-associated environments to describe the symbiotic microbiome and obtain a holistic view of marine host-microbial interactions. Whilst all eukaryotic hosts are likely to benefit from their microbial associates, marine sessile eukaryotes, including macroalgae, seagrasses and various invertebrates (sponges, acidians, corals, hydroids etc), rely in particular on the function of their microbiome. For example, marine sessile eukaryotes are under constant grazing, colonization and fouling pressure from the millions of micro- and macroorganisms in the surrounding seawater. Host-associated microorganisms have been shown to produce secondary metabolites as defense molecules against unwanted colonization or pathogens, thus having an important function in host health and survival. Similarly microbial symbionts of sessile eukaryotes are often essential players in local nutrient cycling thus benefiting both the host and the surrounding ecosystem. Various research fields have contributed to generating knowledge of host-associated systems, including microbiology, biotechnology, molecular biology, ecology, evolution and biotechnology. Through a focus on model marine sessile host systems we believe that new insight into the interactions between host and microbial symbionts will be obtained and important areas of future research will be identified. This research topic includes original research, review and opinion articles that bring together the knowledge from different aspects of biology and highlight advances in our understanding of the diversity and function of the microbiomes on marine sessile hosts.

Animal Biotechnology

Animal Biotechnology PDF Author: Ashish S. Verma
Publisher: Academic Press
ISBN: 0128117109
Category : Medical
Languages : en
Pages : 798

Book Description
Animal Biotechnology: Models in Discovery and Translation, Second Edition, provides a helpful guide to anyone seeking a thorough review of animal biotechnology and its application to human disease and welfare. This updated edition covers vital fundamentals, including animal cell cultures, genome sequencing analysis, epigenetics and animal models, gene expression, and ethics and safety concerns, along with in-depth examples of implications for human health and prospects for the future. New chapters cover animal biotechnology as applied to various disease types and research areas, including in vitro fertilization, human embryonic stem cell research, biosensors, enteric diseases, biopharming, organ transplantation, tuberculosis, neurodegenerative disorders, and more.

The Social Biology of Microbial Communities

The Social Biology of Microbial Communities PDF Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309264324
Category : Medical
Languages : en
Pages : 633

Book Description
Beginning with the germ theory of disease in the 19th century and extending through most of the 20th century, microbes were believed to live their lives as solitary, unicellular, disease-causing organisms . This perception stemmed from the focus of most investigators on organisms that could be grown in the laboratory as cellular monocultures, often dispersed in liquid, and under ambient conditions of temperature, lighting, and humidity. Most such inquiries were designed to identify microbial pathogens by satisfying Koch's postulates.3 This pathogen-centric approach to the study of microorganisms produced a metaphorical "war" against these microbial invaders waged with antibiotic therapies, while simultaneously obscuring the dynamic relationships that exist among and between host organisms and their associated microorganisms-only a tiny fraction of which act as pathogens. Despite their obvious importance, very little is actually known about the processes and factors that influence the assembly, function, and stability of microbial communities. Gaining this knowledge will require a seismic shift away from the study of individual microbes in isolation to inquiries into the nature of diverse and often complex microbial communities, the forces that shape them, and their relationships with other communities and organisms, including their multicellular hosts. On March 6 and 7, 2012, the Institute of Medicine's (IOM's) Forum on Microbial Threats hosted a public workshop to explore the emerging science of the "social biology" of microbial communities. Workshop presentations and discussions embraced a wide spectrum of topics, experimental systems, and theoretical perspectives representative of the current, multifaceted exploration of the microbial frontier. Participants discussed ecological, evolutionary, and genetic factors contributing to the assembly, function, and stability of microbial communities; how microbial communities adapt and respond to environmental stimuli; theoretical and experimental approaches to advance this nascent field; and potential applications of knowledge gained from the study of microbial communities for the improvement of human, animal, plant, and ecosystem health and toward a deeper understanding of microbial diversity and evolution. The Social Biology of Microbial Communities: Workshop Summary further explains the happenings of the workshop.

Assessments and Conservation of Biological Diversity from Coral Reefs to the Deep Sea

Assessments and Conservation of Biological Diversity from Coral Reefs to the Deep Sea PDF Author: Jose Victor Lopez
Publisher: Elsevier
ISBN: 0128241136
Category : Science
Languages : en
Pages : 264

Book Description
Assessments and Conservation of Biological Diversity from Coral Reefs to the Deep Sea: Uncovering Buried Treasures and the Value of the Benthos examines marine benthic habitats around the world that are linked by their physical location at the bottom of the oceans. The book approaches deep sea marine biodiversity with perspectives on genetics, microbiology and evolution, weaving a narrative of vital expert linkages with the goal of protecting something that most people cannot witness or experience. It provides a full assessment of biological diversity within benthic habitats, from coral reefs to plankton and fish species, and offers global case studies. It is the ideal resource for marine conservationists and biologists aiming to expand their knowledge and efforts to the rarely seen, yet equally important, realms of the ocean and respective benthic species. As these deep-sea ecosystems and their species face unprecedented threats of destruction and extinction due to factors including climate change, this book provides the most current knowledge of this undersea world along with solutions for its conservation. - Compares and contrasts between shallow and marine habitats to reveal revolutionary connections and continuity - Analyzes modern threats and gaps in biological knowledge regarding benthic communities - Examines benthic biodiversity through vertical vs. horizontal gradients - Poses possible solutions for the conservation of benthic habitats and organisms

Marine Microbiology

Marine Microbiology PDF Author: Se-Kwon Kim
Publisher: John Wiley & Sons
ISBN: 3527665277
Category : Science
Languages : en
Pages : 558

Book Description
Deliberately breaking with the classical biology-centered description of marine organisms and their products, this reference emphasizes microbial technology over basic biology, setting it apart from its predecessors. As such, it systematically covers the technology behind high-value compounds for use as pharmaceuticals, nutraceuticals or cosmetics, from prospecting to production issues. Following a definition of the field, the book goes on to address all industrially important aspects of marine microbial biotechnology. The first main part contains a description of the major production organisms, from archaebacteria to cyanobacteria to algae and symbionts, including their genetic engineering. The remaining four parts look at commercially important compounds produced by these microorganisms together with their applications. Throughout, the emphasis is on technological considerations, and the future potential of these organisms or compound classes is discussed. A valuable and forward-looking resource for innovative biotechnologists in industry as well as in academia.

Nineteenth International Seaweed Symposium

Nineteenth International Seaweed Symposium PDF Author: Michael A. Borowitzka
Publisher: Springer Science & Business Media
ISBN: 1402096194
Category : Science
Languages : en
Pages : 551

Book Description
The Proceedings of the 19th International Seaweed Symposium provides an invaluable reference to a wide range of fields in applied phycology. Papers cover topics as diverse as the systematics, ecology, physiology, integrated multitrophic aquaculture, commercial applications, carbohydrate chemistry and applications, harvesting biology, cultivation of seaweeds and microalgae and more. Contributions from all parts of the world give the volume exceptional relevance in an increasingly global scientific and commercial climate. Like its predecessors, this volume provides a benchmark of progress in all fields of applied seaweed science and management, and will be referred to for many years to come.

Seagrasses of Australia

Seagrasses of Australia PDF Author: Anthony W. D. Larkum
Publisher: Springer
ISBN: 331971354X
Category : Science
Languages : en
Pages : 791

Book Description
This book takes the place of “Biology of Seagrasses: A Treatise on the Biology of Seagrasses with Special Reference to the Australian Region”, co-edited by A.W.D. Larkum, A.J. MaCComb and S.A. Shepherd and published by Elsevier in 1989. The first book has been influential, but it is now 25 years since it was published and seagrass studies have progressed and developed considerably since then. The design of the current book follows in the steps of the first book. There are chapters on taxonomy, floral biology, biogeography and regional studies. The regional studies emphasize the importance of Australia having over half of the world’s 62 species, including some ten species published for Australia since the previous book. There are a number of chapters on ecology and biogeography; fish biology and fisheries and dugong biology are prominent chapters. Physiological aspects again play an important part, including new knowledge on the role of hydrogen sulphide in sediments and on photosynthetic processes. Climate change, pollution and environmental degradation this time gain an even more important part of the book. Decline of seagrasses around Australia are also discussed in detail in several chapters. Since the first book was published two new areas have received special attention: blue carbon and genomic studies. Seagrasses are now known to be a very important player in the formation of blue carbon, i.e. carbon that has a long turnover time in soils and sediments. Alongside salt marshes and mangroves, seagrasses are now recognized as playing a very important role in the formation of blue carbon. And because Australia has such an abundance and variety of seagrasses, their role in blue carbon production and turnover is of great importance. The first whole genomes of seagrasses are now available and Australia has played an important role here. It appears that seagrasses have several different suites of genes as compared with other (land) plants and even in comparison with freshwater hydrophytes. This difference is leading to important molecular biological studies where the new knowledge will be important to the understanding and conservation of seagrass ecosystems in Australia. Thus by reason of its natural abundance of diverse seagrasses and a sophisticated seagrass research community in Australia it is possible to produce a book which will be attractive to marine biologists, coastal scientists and conservationists from many countries around the world.

Symbiotic Microbiomes of Coral Reefs Sponges and Corals

Symbiotic Microbiomes of Coral Reefs Sponges and Corals PDF Author: Zhiyong Li
Publisher: Springer
ISBN: 9402416129
Category : Science
Languages : en
Pages : 569

Book Description
This book focuses on the symbiotic microbiomes of invertebrates in coral reefs, especially sponges and corals. It provides in-depth and up-to-date reviews on the microbial structure and diversity, metabolism and function, symbiosis and coevolution, environment and adaption, and bioactive potentials. Meanwhile, the future perspectives will be discussed according to the existing problems and the development trend. This book will be of particular interest to the professionals in marine ecology, marine biotechnology, as well as medicinal chemists and molecular biologists.

Microbial Responses to Environmental Changes

Microbial Responses to Environmental Changes PDF Author: Jürg B. Logue
Publisher: Frontiers Media SA
ISBN: 2889197239
Category : Microbiology
Languages : en
Pages : 263

Book Description
Advances in next generation sequencing technologies, omics, and bioinformatics are revealing a tremendous and unsuspected diversity of microbes, both at a compositional and functional level. Moreover, the expansion of ecological concepts into microbial ecology has greatly advanced our comprehension of the role microbes play in the functioning of ecosystems across a wide range of biomes. Super-imposed on this new information about microbes, their functions and how they are organized, environmental gradients are changing rapidly, largely driven by direct and indirect human activities. In the context of global change, understanding the mechanisms that shape microbial communities is pivotal to predict microbial responses to novel selective forces and their implications at the local as well as global scale. One of the main features of microbial communities is their ability to react to changes in the environment. Thus, many studies have reported changes in the performance and composition of communities along environmental gradients. However, the mechanisms underlying these responses remain unclear. It is assumed that the response of microbes to changes in the environment is mediated by a complex combination of shifts in the physiological properties, single-cell activities, or composition of communities: it may occur by means of physiological adjustments of the taxa present in a community or selecting towards more tolerant/better adapted phylotypes. Knowing whether certain factors trigger one, many, or all mechanisms would greatly increase confidence in predictions of future microbial composition and processes. This Research Topic brings together studies that applied the latest molecular techniques for studying microbial composition and functioning and integrated ecological, biogeochemical and/or modeling approaches to provide a comprehensive and mechanistic perspective of the responses of micro-organisms to environmental changes. This Research Topic presents new findings on environmental parameters influencing microbial communities, the type and magnitude of response and differences in the response among microbial groups, and which collectively deepen our current understanding and knowledge of the underlying mechanisms of microbial structural and functional responses to environmental changes and gradients in both aquatic and terrestrial ecosystems. The body of work has, furthermore, identified many challenges and questions that yet remain to be addressed and new perspectives to follow up on.