Micro-scale Studies on Hydrodynamics and Mass Transfer of Dense Carbon Dioxide Segments in Water PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Micro-scale Studies on Hydrodynamics and Mass Transfer of Dense Carbon Dioxide Segments in Water PDF full book. Access full book title Micro-scale Studies on Hydrodynamics and Mass Transfer of Dense Carbon Dioxide Segments in Water by Ning Qin. Download full books in PDF and EPUB format.

Micro-scale Studies on Hydrodynamics and Mass Transfer of Dense Carbon Dioxide Segments in Water

Micro-scale Studies on Hydrodynamics and Mass Transfer of Dense Carbon Dioxide Segments in Water PDF Author: Ning Qin
Publisher:
ISBN:
Category : Carbon dioxide
Languages : en
Pages : 248

Book Description
Microfluidic technologies have started to show their potential in assisting with the probes into the complicated mechanical-chemical interactions of multiphase fluids at microscale geometries (e.g., regular channels, porous media micromodels). The benefits of appropriately implementing microfluidics in such research efforts may include, but are not limited to: (1) small-dimensions facilitated analogous mechanical behaviors, (2) precise and reliable controls over relevant operating parameters of the fluids, (3) approximated reproduction of the hydrostatic or hydrodynamic circumstances, and (4) implementations of advanced visualization technologies such as microscopic imaging in order to reveal the dynamic processes involved in those multi-fluid interactions. Following the early studies on two-phase flow such as oil and water in microscale devices driven by the understanding of oil recovery process and mechanisms, carbon dioxide (CO2) has drawn increasing attention because of their environmental impact such as greenhouse gas effects. Most studies target either enhancing the chemical reactions by using pressurized CO2 as a solvent or revealing physical properties as well as mass transfer performance of gaseous CO2 in common hydrodynamic scenarios. However, dense CO2 including liquid and supercritical states are rarely touched, which is mainly due to the technical difficulties in working with extreme pressures (tens to hundreds times of atmospheric pressure) and elevated temperatures (> 31ʻC). Driven by the literature voids, this thesis presents some preliminary studies of the hydrodynamic issues and mass transfer of dense CO2 in a form of flowing segments in microchannels. Prior to the commencement of any experimental work concerning dense CO2, a system capable of working at extreme pressures reliably and safely needs to be build first. Chapter 3 details the building of an experimental system which is dedicated to two phase microfluidic studies, especially for those related to extreme pressure/temperature conditions. Based on two principles of being extreme conditions durable and leakage free., a few goals, namely, reliability, flexibility and coordinability of this system are achieved. The first part of this thesis (Chapter 4) presents an experimental study of a fluid pair, namely, liquid CO2 and deionized (DI) water, in a micro T-junction, where liquid CO2 and DI water are injected from the side and the main channel of the T-junction, respectively. Drop flow and co-flow are identified as two main flow regimes subjected to the various flow rate ratios applied. By focusing on the drop flow, a full period of liquid CO2 drop generation is divided into three stages, and each stage is meticulously described in terms of the interfacial developments (e.g., interface profile, pressures across the interface, size variations). The mass transfer mechanisms including CO2 hydration, diffusion on a perpendicular dimension of the interface and the advection parallel to the interface are considered and discussed in terms of their effects in CO2 molecules transport. An overall theoretical analysis of such mechanisms verifies that the transported CO2 portion is a small quantity compared with the bulk CO2 stream. Based on this verification, the generated liquid CO2 drop size, speed, and the spacing development within one drop generation period are probed. A formulation of drop size with the flow rate ratio shows a magnified effect of the later factor, which is interpreted by the extended time scale of an 'elongating-squeezing' stage of the period. Drop speed results show that they can be approximated by dividing the total flow rates over the channel cross-sectional area. And the speed differences between the generated drop and the emerging one in the T-junction lead to a model which details the spacing development within one drop generation period. The model is well validated by experimental results. The second (Chapter 5) and the third part (Chapter 6) of the thesis are devoted to the investigations of hydrodynamics and mass transfer of liquid CO2 and scCO2 drops traveling simultaneously with water in a long straight microchannel (~15mm long), respectively. The production of such CO2 drops is realized by using the aforementioned micro T-junction. Distinctly, these studies focus on the drop size and drop speed at three specified positions of the channel and the mass transfer caused shrinkage of the CO2 drop quantified by the decreasing drop length. In order to calculate the mass transfer coefficient of CO2 drops, the detailed geometries of a Taylor drop in the square microchannel with a presence of wall films that separate the drop from the channel wall are considered, and consequently, the surface area and the volume of the drop are formulated based on the drop dimensions, channel geometries, contact angle and estimated film thicknesses. Furthermore, a specific mathematical model is developed to calculate the mass transfer coefficients based on the drop length reductions and drop flowing time in the channel. Discussions on these results indicate that surface-volume ratio and drop flow time are the two main factors in controlling the hydrodynamic shrinkage of the liquid CO2 and scCO2 drops. In addition, pressure declines of segmented flows in microchannels are considered and their effects are evaluated based on a pressure decline model and the Peng-Robinson equation of state (Eos) as well as the estimated initial pressures at the T-junction. Calculations of the resulted volume changes from the pressure declines show that the influences are small, and the observed CO2 drop shrinkage is confidently attributed to the mass transfer across the interface between the CO2 phase and water phase. The last part (Chapter 7) presents a numerical study of the hydrodynamics of one single liquid CO2 drop and one single scCO2 drop traveling in a straight microchannel simultaneously with water as the carrier fluid. A two-dimensional (2D) computational domain of the straight microchannel is configured based on the experimental observations. Three liquid CO2 cases and three scCO2 cases are studied. It is found that the computed drop is disk-like shape encapsulated by thin films that separate the drop from the channel walls. The predicated film thicknesses agree very well with the literature. Besides, the flow domain within CO2 drops could be mainly composed of a few vortex regions, and small vortex regions at the front and the back cap of the drop start to vanish with increased velocities. Analysis of the mechanisms causing the vortexes is provided. The interfacial CO2 distributions of the drop show that both diffusion and local relative convection at the meniscus regions contribute to the concentration profile. Although no significant drop shrinkage is observed for typical Taylor drops, the one for the case with the highest capillary number (Ca ~ 10-2) defined from its pure diffusional gradient profile showed a similar development tendency over time as its experimental counterpart in Chapter 6.

Micro-scale Studies on Hydrodynamics and Mass Transfer of Dense Carbon Dioxide Segments in Water

Micro-scale Studies on Hydrodynamics and Mass Transfer of Dense Carbon Dioxide Segments in Water PDF Author: Ning Qin
Publisher:
ISBN:
Category : Carbon dioxide
Languages : en
Pages : 248

Book Description
Microfluidic technologies have started to show their potential in assisting with the probes into the complicated mechanical-chemical interactions of multiphase fluids at microscale geometries (e.g., regular channels, porous media micromodels). The benefits of appropriately implementing microfluidics in such research efforts may include, but are not limited to: (1) small-dimensions facilitated analogous mechanical behaviors, (2) precise and reliable controls over relevant operating parameters of the fluids, (3) approximated reproduction of the hydrostatic or hydrodynamic circumstances, and (4) implementations of advanced visualization technologies such as microscopic imaging in order to reveal the dynamic processes involved in those multi-fluid interactions. Following the early studies on two-phase flow such as oil and water in microscale devices driven by the understanding of oil recovery process and mechanisms, carbon dioxide (CO2) has drawn increasing attention because of their environmental impact such as greenhouse gas effects. Most studies target either enhancing the chemical reactions by using pressurized CO2 as a solvent or revealing physical properties as well as mass transfer performance of gaseous CO2 in common hydrodynamic scenarios. However, dense CO2 including liquid and supercritical states are rarely touched, which is mainly due to the technical difficulties in working with extreme pressures (tens to hundreds times of atmospheric pressure) and elevated temperatures (> 31ʻC). Driven by the literature voids, this thesis presents some preliminary studies of the hydrodynamic issues and mass transfer of dense CO2 in a form of flowing segments in microchannels. Prior to the commencement of any experimental work concerning dense CO2, a system capable of working at extreme pressures reliably and safely needs to be build first. Chapter 3 details the building of an experimental system which is dedicated to two phase microfluidic studies, especially for those related to extreme pressure/temperature conditions. Based on two principles of being extreme conditions durable and leakage free., a few goals, namely, reliability, flexibility and coordinability of this system are achieved. The first part of this thesis (Chapter 4) presents an experimental study of a fluid pair, namely, liquid CO2 and deionized (DI) water, in a micro T-junction, where liquid CO2 and DI water are injected from the side and the main channel of the T-junction, respectively. Drop flow and co-flow are identified as two main flow regimes subjected to the various flow rate ratios applied. By focusing on the drop flow, a full period of liquid CO2 drop generation is divided into three stages, and each stage is meticulously described in terms of the interfacial developments (e.g., interface profile, pressures across the interface, size variations). The mass transfer mechanisms including CO2 hydration, diffusion on a perpendicular dimension of the interface and the advection parallel to the interface are considered and discussed in terms of their effects in CO2 molecules transport. An overall theoretical analysis of such mechanisms verifies that the transported CO2 portion is a small quantity compared with the bulk CO2 stream. Based on this verification, the generated liquid CO2 drop size, speed, and the spacing development within one drop generation period are probed. A formulation of drop size with the flow rate ratio shows a magnified effect of the later factor, which is interpreted by the extended time scale of an 'elongating-squeezing' stage of the period. Drop speed results show that they can be approximated by dividing the total flow rates over the channel cross-sectional area. And the speed differences between the generated drop and the emerging one in the T-junction lead to a model which details the spacing development within one drop generation period. The model is well validated by experimental results. The second (Chapter 5) and the third part (Chapter 6) of the thesis are devoted to the investigations of hydrodynamics and mass transfer of liquid CO2 and scCO2 drops traveling simultaneously with water in a long straight microchannel (~15mm long), respectively. The production of such CO2 drops is realized by using the aforementioned micro T-junction. Distinctly, these studies focus on the drop size and drop speed at three specified positions of the channel and the mass transfer caused shrinkage of the CO2 drop quantified by the decreasing drop length. In order to calculate the mass transfer coefficient of CO2 drops, the detailed geometries of a Taylor drop in the square microchannel with a presence of wall films that separate the drop from the channel wall are considered, and consequently, the surface area and the volume of the drop are formulated based on the drop dimensions, channel geometries, contact angle and estimated film thicknesses. Furthermore, a specific mathematical model is developed to calculate the mass transfer coefficients based on the drop length reductions and drop flowing time in the channel. Discussions on these results indicate that surface-volume ratio and drop flow time are the two main factors in controlling the hydrodynamic shrinkage of the liquid CO2 and scCO2 drops. In addition, pressure declines of segmented flows in microchannels are considered and their effects are evaluated based on a pressure decline model and the Peng-Robinson equation of state (Eos) as well as the estimated initial pressures at the T-junction. Calculations of the resulted volume changes from the pressure declines show that the influences are small, and the observed CO2 drop shrinkage is confidently attributed to the mass transfer across the interface between the CO2 phase and water phase. The last part (Chapter 7) presents a numerical study of the hydrodynamics of one single liquid CO2 drop and one single scCO2 drop traveling in a straight microchannel simultaneously with water as the carrier fluid. A two-dimensional (2D) computational domain of the straight microchannel is configured based on the experimental observations. Three liquid CO2 cases and three scCO2 cases are studied. It is found that the computed drop is disk-like shape encapsulated by thin films that separate the drop from the channel walls. The predicated film thicknesses agree very well with the literature. Besides, the flow domain within CO2 drops could be mainly composed of a few vortex regions, and small vortex regions at the front and the back cap of the drop start to vanish with increased velocities. Analysis of the mechanisms causing the vortexes is provided. The interfacial CO2 distributions of the drop show that both diffusion and local relative convection at the meniscus regions contribute to the concentration profile. Although no significant drop shrinkage is observed for typical Taylor drops, the one for the case with the highest capillary number (Ca ~ 10-2) defined from its pure diffusional gradient profile showed a similar development tendency over time as its experimental counterpart in Chapter 6.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1338

Book Description


Bubble Column Reactions

Bubble Column Reactions PDF Author: Wolf-Dieter Deckwer
Publisher: John Wiley & Sons
ISBN:
Category : Science
Languages : en
Pages : 564

Book Description
This technology, though used for many years, has shown great vitality recently and is still in a state of flux. Provides an account of developments up to the present and also an orderly evaluation of literature already published on the subject. Considerable space is devoted to bubble column reactor performance predictions based on mathematical models and the importance of each is explained with practical examples.

Intensification of Biobased Processes

Intensification of Biobased Processes PDF Author: Andrzej Gorak
Publisher: Royal Society of Chemistry
ISBN: 1788010329
Category : Science
Languages : en
Pages : 544

Book Description
The first book dedicated entirely to this area, Intensification of Biobased Processes provides a comprehensive overview of modern process intensification technologies used in bioprocessing.

Bioreactors

Bioreactors PDF Author: Carl-Fredrik Mandenius
Publisher: John Wiley & Sons
ISBN: 3527683372
Category : Science
Languages : en
Pages : 520

Book Description
In this expert handbook both the topics and contributors are selected so as to provide an authoritative view of possible applications for this new technology. The result is an up-to-date survey of current challenges and opportunities in the design and operation of bioreactors for high-value products in the biomedical and chemical industries. Combining theory and practice, the authors explain such leading-edge technologies as single-use bioreactors, bioreactor simulators, and soft sensor monitoring, and discuss novel applications, such as stem cell production, process development, and multi-product reactors, using case studies from academia as well as from industry. A final section addresses the latest trends, including culture media design and systems biotechnology, which are expected to have an increasing impact on bioreactor design. With its focus on cutting-edge technologies and discussions of future developments, this handbook will remain an invaluable reference for many years to come.

Gas-liquid Reactions

Gas-liquid Reactions PDF Author: P. V. Danckwerts
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 298

Book Description


Oil in the Sea III

Oil in the Sea III PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309084385
Category : Science
Languages : en
Pages : 278

Book Description
Since the early 1970s, experts have recognized that petroleum pollutants were being discharged in marine waters worldwide, from oil spills, vessel operations, and land-based sources. Public attention to oil spills has forced improvements. Still, a considerable amount of oil is discharged yearly into sensitive coastal environments. Oil in the Sea provides the best available estimate of oil pollutant discharge into marine waters, including an evaluation of the methods for assessing petroleum load and a discussion about the concerns these loads represent. Featuring close-up looks at the Exxon Valdez spill and other notable events, the book identifies important research questions and makes recommendations for better analysis ofâ€"and more effective measures againstâ€"pollutant discharge. The book discusses: Inputâ€"where the discharges come from, including the role of two-stroke engines used on recreational craft. Behavior or fateâ€"how oil is affected by processes such as evaporation as it moves through the marine environment. Effectsâ€"what we know about the effects of petroleum hydrocarbons on marine organisms and ecosystems. Providing a needed update on a problem of international importance, this book will be of interest to energy policy makers, industry officials and managers, engineers and researchers, and advocates for the marine environment.

Chemical Reactor Design and Operation

Chemical Reactor Design and Operation PDF Author: K. Roel Westerterp
Publisher: Wiley
ISBN: 9780471917304
Category : Technology & Engineering
Languages : en
Pages : 800

Book Description
Chemical Reactor Design and Operation K. R. Westerterp, W. P. M. van Swaaij and A. A. C. M. Beenackers Chemical Reaction Engineering Laboratories, Twente University of Technology, Enschede, The Netherlands This is a comprehensive handbook on the design and operation of chemical reactors which are vital elements in every manufacturing process. The book offers an introduction to the modern literature and covers in depth the relevant theory of chemical reactors. The theory is illustrated by numerous worked examples typical to chemical reaction engineering practice in research, development, design and operation. The examples range from fine chemicals to large scale production and from water purification to metallurgical processes, commencing with simple homogenous model reactors and then moving to the complicated, multi-phase, heterogeneous reactors met with in reality. All the examples are based on the industrial experience of the authors. Much effort is dedicated to the behaviour of reactors in practice and to the capacity, yield and selectivity of the reactor. The book is thoroughly indexed and cross-referenced. This edition will be particularly useful to undergraduate and graduate students studying chemical reactors. Contents Fundamentals of chemical reactor calculations Model reactors: single reactions, isothermal single phase reactor calculations Model reactors: multiple reactions, isothermal single phase reactors Residence time distribution and mixing in continuous flow reactors Influence of micromixing on chemical reactions The role of the heat effect in model reactors Multi-phase reactors, single reactions Multi-phase reactors, multiple reactions Heat effects in multi-phase reactors The authors: The authors have accumulated a long experience both in fine chemicals and in the petrochemicals industry, in Europe as well as abroad. Currently they are jointly responsible for the research work in chemical reaction engineering and process development at Twente University. Several new reactor types and new processes have been developed at their institute and present research interests include gasification, fluidization and gas--liquid reactors, three-phase reactors, high-pressure technology in chemical reaction engineering, thermal behaviour of heterogeneous reactors and computer design and economic evaluation of reaction units and chemical plants.

Bubbly Flows

Bubbly Flows PDF Author: Martin Sommerfeld
Publisher: Springer Science & Business Media
ISBN: 3642185401
Category : Science
Languages : en
Pages : 354

Book Description
The book summarises the outcom of a priority research programme: 'Analysis, Modelling and Computation of Multiphase Flows'. The results of 24 individual research projects are presented. The main objective of the research programme was to provide a better understanding of the physical basis for multiphase gas-liquid flows as they are found in numerous chemical and biochemical reactors. The research comprises steady and unsteady multiphase flows in three frequently found reactor configurations, namely bubble columns without interiors, airlift loop reactors, and aerated stirred vessels. For this purpose new and improved measurement techniques were developed. From the resulting knowledge and data, new and refined models for describing the underlying physical processes were developed, which were used for the establishment and improvement of analytic as well as numerical methods for predicting multiphase reactors. Thereby, the development, lay-out and scale-up of such processes should be possible on a more reliable basis.

Fundamentals of Heat Exchanger Design

Fundamentals of Heat Exchanger Design PDF Author: Ramesh K. Shah
Publisher: John Wiley & Sons
ISBN: 9780471321712
Category : Technology & Engineering
Languages : en
Pages : 978

Book Description
Comprehensive and unique source integrates the material usually distributed among a half a dozen sources. * Presents a unified approach to modeling of new designs and develops the skills for complex engineering analysis. * Provides industrial insight to the applications of the basic theory developed.