Methods of Graded Rings PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Methods of Graded Rings PDF full book. Access full book title Methods of Graded Rings by Constantin Nastasescu. Download full books in PDF and EPUB format.

Methods of Graded Rings

Methods of Graded Rings PDF Author: Constantin Nastasescu
Publisher: Springer Science & Business Media
ISBN: 9783540207467
Category : Mathematics
Languages : en
Pages : 324

Book Description
The Category of Graded Rings.- The Category of Graded Modules.- Modules over Stronly Graded Rings.- Graded Clifford Theory.- Internal Homogenization.- External Homogenization.- Smash Products.- Localization of Graded Rings.- Application to Gradability.- Appendix A:Some Category Theory.- Appendix B: Dimensions in an abelian Category.- Bibliography.- Index.-

Methods of Graded Rings

Methods of Graded Rings PDF Author: Constantin Nastasescu
Publisher: Springer Science & Business Media
ISBN: 9783540207467
Category : Mathematics
Languages : en
Pages : 324

Book Description
The Category of Graded Rings.- The Category of Graded Modules.- Modules over Stronly Graded Rings.- Graded Clifford Theory.- Internal Homogenization.- External Homogenization.- Smash Products.- Localization of Graded Rings.- Application to Gradability.- Appendix A:Some Category Theory.- Appendix B: Dimensions in an abelian Category.- Bibliography.- Index.-

Methods in Ring Theory

Methods in Ring Theory PDF Author: Freddy Van Oystaeyen
Publisher: Springer Science & Business Media
ISBN: 9400963696
Category : Mathematics
Languages : en
Pages : 569

Book Description
Proceedings of the NATO Advanced Study Institute, Antwerp, Belgium, August 2-12, 1983

Graded Ring Theory

Graded Ring Theory PDF Author: C. Nastasescu
Publisher: Elsevier
ISBN: 0080960162
Category : Mathematics
Languages : en
Pages : 352

Book Description
This book is aimed to be a ‘technical’ book on graded rings. By ‘technical’ we mean that the book should supply a kit of tools of quite general applicability, enabling the reader to build up his own further study of non-commutative rings graded by an arbitrary group. The body of the book, Chapter A, contains: categorical properties of graded modules, localization of graded rings and modules, Jacobson radicals of graded rings, the structure thedry for simple objects in the graded sense, chain conditions, Krull dimension of graded modules, homogenization, homological dimension, primary decomposition, and more. One of the advantages of the generality of Chapter A is that it allows direct applications of these results to the theory of group rings, twisted and skew group rings and crossed products. With this in mind we have taken care to point out on several occasions how certain techniques may be specified to the case of strongly graded rings. We tried to write Chapter A in such a way that it becomes suitable for an advanced course in ring theory or general algebra, we strove to make it as selfcontained as possible and we included several problems and exercises. Other chapters may be viewed as an attempt to show how the general techniques of Chapter A can be applied in some particular cases, e.g. the case where the gradation is of type Z. In compiling the material for Chapters B and C we have been guided by our own research interests. Chapter 6 deals with commutative graded rings of type 2 and we focus on two main topics: artihmeticallygraded domains, and secondly, local conditions for Noetherian rings. In Chapter C we derive some structural results relating to the graded properties of the rings considered. The following classes of graded rings receive special attention: fully bounded Noetherian rings, birational extensions of commutative rings, rings satisfying polynomial identities, and Von Neumann regular rings. Here the basic idea is to derive results of ungraded nature from graded information. Some of these sections lead naturally to the study of sheaves over the projective spectrum Proj(R) of a positively graded ring, but we did not go into these topics here. We refer to [125] for a noncommutative treatment of projective geometry, i.e. the geometry of graded P.I. algebras.

Graded Rings and Graded Grothendieck Groups

Graded Rings and Graded Grothendieck Groups PDF Author: Roozbeh Hazrat
Publisher: Cambridge University Press
ISBN: 1316619583
Category : Mathematics
Languages : en
Pages : 244

Book Description
This study of graded rings includes the first systematic account of the graded Grothendieck group, a powerful and crucial invariant in algebra which has recently been adopted to classify the Leavitt path algebras. The book begins with a concise introduction to the theory of graded rings and then focuses in more detail on Grothendieck groups, Morita theory, Picard groups and K-theory. The author extends known results in the ungraded case to the graded setting and gathers together important results which are currently scattered throughout the literature. The book is suitable for advanced undergraduate and graduate students, as well as researchers in ring theory.

Methods of Homological Algebra

Methods of Homological Algebra PDF Author: Sergei I. Gelfand
Publisher: Springer Science & Business Media
ISBN: 3662032201
Category : Mathematics
Languages : en
Pages : 388

Book Description
Homological algebra first arose as a language for describing topological prospects of geometrical objects. As with every successful language it quickly expanded its coverage and semantics, and its contemporary applications are many and diverse. This modern approach to homological algebra, by two leading writers in the field, is based on the systematic use of the language and ideas of derived categories and derived functors. Relations with standard cohomology theory (sheaf cohomology, spectral sequences, etc.) are described. In most cases complete proofs are given. Basic concepts and results of homotopical algebra are also presented. The book addresses people who want to learn about a modern approach to homological algebra and to use it in their work.

Rings and Their Modules

Rings and Their Modules PDF Author: Paul E. Bland
Publisher: Walter de Gruyter
ISBN: 3110250225
Category : Mathematics
Languages : en
Pages : 467

Book Description
This book is an introduction to the theory of rings and modules that goes beyond what one normally obtains in a graduate course in abstract algebra. In addition to the presentation of standard topics in ring and module theory, it also covers category theory, homological algebra and even more specialized topics like injective envelopes and proj

Determinantal Rings

Determinantal Rings PDF Author: Winfried Bruns
Publisher: Springer
ISBN: 3540392742
Category : Mathematics
Languages : en
Pages : 246

Book Description
Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. Their study has attracted many prominent researchers and has motivated the creation of theories which may now be considered part of general commutative ring theory. The book gives a first coherent treatment of the structure of determinantal rings. The main approach is via the theory of algebras with straightening law. This approach suggest (and is simplified by) the simultaneous treatment of the Schubert subvarieties of Grassmannian. Other methods have not been neglected, however. Principal radical systems are discussed in detail, and one section is devoted to each of invariant and representation theory. While the book is primarily a research monograph, it serves also as a reference source and the reader requires only the basics of commutative algebra together with some supplementary material found in the appendix. The text may be useful for seminars following a course in commutative ring theory since a vast number of notions, results, and techniques can be illustrated significantly by applying them to determinantal rings.

Cohen-Macaulay Rings

Cohen-Macaulay Rings PDF Author: Winfried Bruns
Publisher: Cambridge University Press
ISBN: 0521566746
Category : Mathematics
Languages : en
Pages : 471

Book Description
In the last two decades Cohen-Macaulay rings and modules have been central topics in commutative algebra. This book meets the need for a thorough, self-contained introduction to the homological and combinatorial aspects of the theory of Cohen-Macaulay rings, Gorenstein rings, local cohomology, and canonical modules. A separate chapter is devoted to Hilbert functions (including Macaulay's theorem) and numerical invariants derived from them. The authors emphasize the study of explicit, specific rings, making the presentation as concrete as possible. So the general theory is applied to Stanley-Reisner rings, semigroup rings, determinantal rings, and rings of invariants. Their connections with combinatorics are highlighted, e.g. Stanley's upper bound theorem or Ehrhart's reciprocity law for rational polytopes. The final chapters are devoted to Hochster's theorem on big Cohen-Macaulay modules and its applications, including Peskine-Szpiro's intersection theorem, the Evans-Griffith syzygy theorem, bounds for Bass numbers, and tight closure. Throughout each chapter the authors have supplied many examples and exercises which, combined with the expository style, will make the book very useful for graduate courses in algebra. As the only modern, broad account of the subject it will be essential reading for researchers in commutative algebra.

Functional Analytic Methods for Partial Differential Equations

Functional Analytic Methods for Partial Differential Equations PDF Author: Hiroki Tanabe
Publisher: Routledge
ISBN: 135144686X
Category : Mathematics
Languages : en
Pages : 436

Book Description
Combining both classical and current methods of analysis, this text present discussions on the application of functional analytic methods in partial differential equations. It furnishes a simplified, self-contained proof of Agmon-Douglis-Niremberg's Lp-estimates for boundary value problems, using the theory of singular integrals and the Hilbert transform.

Automorphic Forms and Geometry of Arithmetic Varieties

Automorphic Forms and Geometry of Arithmetic Varieties PDF Author: K. Hashimoto
Publisher: Academic Press
ISBN: 1483218074
Category : Mathematics
Languages : en
Pages : 540

Book Description
Automorphic Forms and Geometry of Arithmetic Varieties deals with the dimension formulas of various automorphic forms and the geometry of arithmetic varieties. The relation between two fundamental methods of obtaining dimension formulas (for cusp forms), the Selberg trace formula and the index theorem (Riemann-Roch's theorem and the Lefschetz fixed point formula), is examined. Comprised of 18 sections, this volume begins by discussing zeta functions associated with cones and their special values, followed by an analysis of cusps on Hilbert modular varieties and values of L-functions. The reader is then introduced to the dimension formula of Siegel modular forms; the graded rings of modular forms in several variables; and Selberg-Ihara's zeta function for p-adic discrete groups. Subsequent chapters focus on zeta functions of finite graphs and representations of p-adic groups; invariants and Hodge cycles; T-complexes and Ogata's zeta zero values; and the structure of the icosahedral modular group. This book will be a useful resource for mathematicians and students of mathematics.