Author: George A. Olah
Publisher: John Wiley & Sons
ISBN: 3527644636
Category : Science
Languages : en
Pages : 351
Book Description
The world is currently consuming about 85 million barrels of oil a day, and about two-thirds as much natural gas equivalent, both derived from non-renewable natural sources. In the foreseeable future, our energy needs will come from any available alternate source. Methanol is one such viable alternative, and also offers a convenient solution for efficient energy storage on a large scale. In this updated and enlarged edition, renowned chemists discuss in a clear and readily accessible manner the pros and cons of humankind's current main energy sources, while providing new ways to overcome obstacles. Following an introduction, the authors look at the interrelationship of fuels and energy, and at the extent of our non-renewable fossil fuels. They also discuss the hydrogen economy and its significant shortcomings. The main focus is on the conversion of CO2 from industrial as well as natural sources into liquid methanol and related DME, a diesel fuel substitute that can replace LNG and LPG. The book is rounded off with an optimistic look at future possibilities. A forward-looking and inspiring work that vividly illustrates potential solutions to our energy and environmental problems.
Beyond Oil and Gas
Author: George A. Olah
Publisher: John Wiley & Sons
ISBN: 3527644636
Category : Science
Languages : en
Pages : 351
Book Description
The world is currently consuming about 85 million barrels of oil a day, and about two-thirds as much natural gas equivalent, both derived from non-renewable natural sources. In the foreseeable future, our energy needs will come from any available alternate source. Methanol is one such viable alternative, and also offers a convenient solution for efficient energy storage on a large scale. In this updated and enlarged edition, renowned chemists discuss in a clear and readily accessible manner the pros and cons of humankind's current main energy sources, while providing new ways to overcome obstacles. Following an introduction, the authors look at the interrelationship of fuels and energy, and at the extent of our non-renewable fossil fuels. They also discuss the hydrogen economy and its significant shortcomings. The main focus is on the conversion of CO2 from industrial as well as natural sources into liquid methanol and related DME, a diesel fuel substitute that can replace LNG and LPG. The book is rounded off with an optimistic look at future possibilities. A forward-looking and inspiring work that vividly illustrates potential solutions to our energy and environmental problems.
Publisher: John Wiley & Sons
ISBN: 3527644636
Category : Science
Languages : en
Pages : 351
Book Description
The world is currently consuming about 85 million barrels of oil a day, and about two-thirds as much natural gas equivalent, both derived from non-renewable natural sources. In the foreseeable future, our energy needs will come from any available alternate source. Methanol is one such viable alternative, and also offers a convenient solution for efficient energy storage on a large scale. In this updated and enlarged edition, renowned chemists discuss in a clear and readily accessible manner the pros and cons of humankind's current main energy sources, while providing new ways to overcome obstacles. Following an introduction, the authors look at the interrelationship of fuels and energy, and at the extent of our non-renewable fossil fuels. They also discuss the hydrogen economy and its significant shortcomings. The main focus is on the conversion of CO2 from industrial as well as natural sources into liquid methanol and related DME, a diesel fuel substitute that can replace LNG and LPG. The book is rounded off with an optimistic look at future possibilities. A forward-looking and inspiring work that vividly illustrates potential solutions to our energy and environmental problems.
Direct Methanol Fuel Cell Technology
Author: Kingshuk Dutta
Publisher: Elsevier
ISBN: 0128191597
Category : Technology & Engineering
Languages : en
Pages : 565
Book Description
Direct Methanol Fuel Cell Technology presents the overall progress witnessed in the field of DMFC over the past decade, highlighting the components, materials, functions, properties and features, designs and configurations, operations, modelling, applications, pros and cons, social, political and market penetration, economics and future directions. The book discusses every single aspect of DMFC device technology, the associated advantages and drawbacks of state-of-the-art materials and design, market opportunities and commercialization aspects, and possible future directions of research and development. This book, containing critical analyses and opinions from experts around the world, will garner considerable interest among actual users/scientists/experts. - Analyzes developments of membrane electrolytes, electrodes, catalysts, catalyst supports, bipolar plates, gas diffusion layers and flow channels as critical components of direct methanol fuel cells - Includes modeling of direct methanol fuel cells to understand their scaling up potentials - Discusses commercial aspects of direct methanol fuel cells in terms of market penetration, end application, cost, viability, reliability, social and commercial perception, drawbacks and prospects
Publisher: Elsevier
ISBN: 0128191597
Category : Technology & Engineering
Languages : en
Pages : 565
Book Description
Direct Methanol Fuel Cell Technology presents the overall progress witnessed in the field of DMFC over the past decade, highlighting the components, materials, functions, properties and features, designs and configurations, operations, modelling, applications, pros and cons, social, political and market penetration, economics and future directions. The book discusses every single aspect of DMFC device technology, the associated advantages and drawbacks of state-of-the-art materials and design, market opportunities and commercialization aspects, and possible future directions of research and development. This book, containing critical analyses and opinions from experts around the world, will garner considerable interest among actual users/scientists/experts. - Analyzes developments of membrane electrolytes, electrodes, catalysts, catalyst supports, bipolar plates, gas diffusion layers and flow channels as critical components of direct methanol fuel cells - Includes modeling of direct methanol fuel cells to understand their scaling up potentials - Discusses commercial aspects of direct methanol fuel cells in terms of market penetration, end application, cost, viability, reliability, social and commercial perception, drawbacks and prospects
Methanol Fuel Cell Systems
Author: Dave Edlund
Publisher: Pan Stanford Publishing
ISBN: 9814241989
Category : Business & Economics
Languages : en
Pages : 200
Book Description
This book details state-of-the-art fuel cell systems incorporating methanol reformers as the source of purified hydrogen (rather than compressed hydrogen). Beginning with an overview of PEM fuel cells, the book discusses the various technical approaches to methanol reforming and hydrogen purification. A unique theme carried throughout the discussion is the practical aspects of commercial applications that favor one technical approach over another. The reader gains an understanding of the chemistry, engineering, economics, and agency certification requirements that ultimately shape the optimal approach for methanol fuel cell systems targeting commercial applications.
Publisher: Pan Stanford Publishing
ISBN: 9814241989
Category : Business & Economics
Languages : en
Pages : 200
Book Description
This book details state-of-the-art fuel cell systems incorporating methanol reformers as the source of purified hydrogen (rather than compressed hydrogen). Beginning with an overview of PEM fuel cells, the book discusses the various technical approaches to methanol reforming and hydrogen purification. A unique theme carried throughout the discussion is the practical aspects of commercial applications that favor one technical approach over another. The reader gains an understanding of the chemistry, engineering, economics, and agency certification requirements that ultimately shape the optimal approach for methanol fuel cell systems targeting commercial applications.
Methanol
Author: Avinash Kumar Agarwal
Publisher: Springer Nature
ISBN: 9811612242
Category : Technology & Engineering
Languages : en
Pages : 284
Book Description
This monograph focuses on methanol and its utilization in transportation sector, namely in spark ignition (SI) engines. The contents focus on methanol production and presents a variety of production technologies from different feedstocks. The potential of methanol utilization in transportation in SI engines is discussed, its challenges, limitations, aspects related to its utilization and current global use of methanol are also presented. The book also contains chapters related to pollutant formation and exhaust emissions from methanol fuelled SI engines, one chapter is focused specifically on formaldehyde emissions, which possesses one of the greatest challenges of methanol use in IC engines. Readers will learn about the production aspects of methanol, its potential as a sustainable fuel, its utilization in SI engine and the effect of methanol and its utilization techniques on engine performance, combustion, exhaust emissions, efficiency and other important parameters. This volume will be a useful guide for professionals, post-graduate students involved in alternative fuels, spark ignition engines, and environmental research.
Publisher: Springer Nature
ISBN: 9811612242
Category : Technology & Engineering
Languages : en
Pages : 284
Book Description
This monograph focuses on methanol and its utilization in transportation sector, namely in spark ignition (SI) engines. The contents focus on methanol production and presents a variety of production technologies from different feedstocks. The potential of methanol utilization in transportation in SI engines is discussed, its challenges, limitations, aspects related to its utilization and current global use of methanol are also presented. The book also contains chapters related to pollutant formation and exhaust emissions from methanol fuelled SI engines, one chapter is focused specifically on formaldehyde emissions, which possesses one of the greatest challenges of methanol use in IC engines. Readers will learn about the production aspects of methanol, its potential as a sustainable fuel, its utilization in SI engine and the effect of methanol and its utilization techniques on engine performance, combustion, exhaust emissions, efficiency and other important parameters. This volume will be a useful guide for professionals, post-graduate students involved in alternative fuels, spark ignition engines, and environmental research.
Guidebook for Evaluating, Selecting, and Implementing Fuel Choices for Transit Bus Operations
Author: ARCADIS Geraghty & Miller, Inc
Publisher: Transportation Research Board
ISBN: 9780309062732
Category : Brain
Languages : en
Pages : 176
Book Description
Publisher: Transportation Research Board
ISBN: 9780309062732
Category : Brain
Languages : en
Pages : 176
Book Description
Methanol and the Alternate Fuel Economy
Author: Avinash Kumar Agarwal
Publisher: Springer
ISBN: 9811332878
Category : Technology & Engineering
Languages : en
Pages : 239
Book Description
This book discusses the emerging research centred on using methanol- whose excellent fuel properties, easy production and relative compatibility with existing technology- make it attractive to researchers looking to alternative fuels to meet the rising energy demand. The volume is divided into broadly 4 parts which discuss various aspects of the proposed methanol economy and the technological advances in engine design for the utilisation of this fuel. This book will be of interest to researchers and policy makers interested in using methanol as the principal source of ready and stored energy in societal functioning.
Publisher: Springer
ISBN: 9811332878
Category : Technology & Engineering
Languages : en
Pages : 239
Book Description
This book discusses the emerging research centred on using methanol- whose excellent fuel properties, easy production and relative compatibility with existing technology- make it attractive to researchers looking to alternative fuels to meet the rising energy demand. The volume is divided into broadly 4 parts which discuss various aspects of the proposed methanol economy and the technological advances in engine design for the utilisation of this fuel. This book will be of interest to researchers and policy makers interested in using methanol as the principal source of ready and stored energy in societal functioning.
Alcohol Fuels Bibliography
Fuels for the Future
Author: United States. Congress. House. Committee on Science. Subcommittee on Energy and Environment
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology
Author: Christoph Hartnig
Publisher: Elsevier
ISBN: 085709548X
Category : Technology & Engineering
Languages : en
Pages : 522
Book Description
Polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) technology are promising forms of low-temperature electrochemical power conversion technologies that operate on hydrogen and methanol respectively. Featuring high electrical efficiency and low operational emissions, they have attracted intense worldwide commercialization research and development efforts. These R&D efforts include a major drive towards improving materials performance, fuel cell operation and durability. In situ characterization is essential to improving performance and extending operational lifetime through providing information necessary to understand how fuel cell materials perform under operational loads.Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology, Volume 2 details in situ characterization, including experimental and innovative techniques, used to understand fuel cell operational issues and materials performance. Part I reviews enhanced techniques for characterization of catalyst activities and processes, such as X-ray absorption and scattering, advanced microscopy and electrochemical mass spectrometry. Part II reviews characterization techniques for water and fuel management, including neutron radiography and tomography, magnetic resonance imaging and Raman spectroscopy. Finally, Part III focuses on locally resolved characterization methods, from transient techniques and electrochemical microscopy, to laser-optical methods and synchrotron radiography.With its international team of expert contributors, Polymer electrolyte membrane and direct methanol fuel cell technology will be an invaluable reference for low temperature fuel cell designers and manufacturers, as well as materials science and electrochemistry researchers and academics. Polymer electrolyte membrane and direct methanol fuel cell technology is an invaluable reference for low temperature fuel cell designers and manufacturers, as well as materials science and electrochemistry researchers and academics. - Details in situ characterisation of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), including the experimental and innovative techniques used to understand fuel cell operational issues and materials performance - Examines enhanced techniques for characterisation of catalyst activities and processes, such as X-ray absorption and scattering, advanced microscopy and electrochemical mass spectrometry - Reviews characterisation techniques for water and fuel management, including neutron radiography and tomography, and comprehensively covers locally resolved characterisation methods, from transient techniques to laser-optical methods
Publisher: Elsevier
ISBN: 085709548X
Category : Technology & Engineering
Languages : en
Pages : 522
Book Description
Polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) technology are promising forms of low-temperature electrochemical power conversion technologies that operate on hydrogen and methanol respectively. Featuring high electrical efficiency and low operational emissions, they have attracted intense worldwide commercialization research and development efforts. These R&D efforts include a major drive towards improving materials performance, fuel cell operation and durability. In situ characterization is essential to improving performance and extending operational lifetime through providing information necessary to understand how fuel cell materials perform under operational loads.Polymer Electrolyte Membrane and Direct Methanol Fuel Cell Technology, Volume 2 details in situ characterization, including experimental and innovative techniques, used to understand fuel cell operational issues and materials performance. Part I reviews enhanced techniques for characterization of catalyst activities and processes, such as X-ray absorption and scattering, advanced microscopy and electrochemical mass spectrometry. Part II reviews characterization techniques for water and fuel management, including neutron radiography and tomography, magnetic resonance imaging and Raman spectroscopy. Finally, Part III focuses on locally resolved characterization methods, from transient techniques and electrochemical microscopy, to laser-optical methods and synchrotron radiography.With its international team of expert contributors, Polymer electrolyte membrane and direct methanol fuel cell technology will be an invaluable reference for low temperature fuel cell designers and manufacturers, as well as materials science and electrochemistry researchers and academics. Polymer electrolyte membrane and direct methanol fuel cell technology is an invaluable reference for low temperature fuel cell designers and manufacturers, as well as materials science and electrochemistry researchers and academics. - Details in situ characterisation of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs), including the experimental and innovative techniques used to understand fuel cell operational issues and materials performance - Examines enhanced techniques for characterisation of catalyst activities and processes, such as X-ray absorption and scattering, advanced microscopy and electrochemical mass spectrometry - Reviews characterisation techniques for water and fuel management, including neutron radiography and tomography, and comprehensively covers locally resolved characterisation methods, from transient techniques to laser-optical methods
Methanol
Author: Angelo Basile
Publisher: Elsevier
ISBN: 044464010X
Category : Technology & Engineering
Languages : en
Pages : 708
Book Description
Methanol: Science and Engineering provides a comprehensive review of the chemistry, properties, and current and potential uses and applications of methanol. Divided into four parts, the book begins with a detailed account of current production methods and their economics. The second part deals with the applications of methanol, providing useful insights into future applications. Modeling of the various reactor systems is covered in the next section, with final discussions in the book focusing on the economic and environmental impact of this chemical. Users will find this to be a must-have resource for all researchers and engineers studying alternative energy sources. - Provides the latest developments on methanol research - Reviews methanol production methods and their economics - Outlines the use of methanol as an alternative green transportation fuel - Includes new technologies and many new applications of methanol
Publisher: Elsevier
ISBN: 044464010X
Category : Technology & Engineering
Languages : en
Pages : 708
Book Description
Methanol: Science and Engineering provides a comprehensive review of the chemistry, properties, and current and potential uses and applications of methanol. Divided into four parts, the book begins with a detailed account of current production methods and their economics. The second part deals with the applications of methanol, providing useful insights into future applications. Modeling of the various reactor systems is covered in the next section, with final discussions in the book focusing on the economic and environmental impact of this chemical. Users will find this to be a must-have resource for all researchers and engineers studying alternative energy sources. - Provides the latest developments on methanol research - Reviews methanol production methods and their economics - Outlines the use of methanol as an alternative green transportation fuel - Includes new technologies and many new applications of methanol