Author: Jean-Michel Torrenti
Publisher: John Wiley & Sons
ISBN: 1118622308
Category : Technology & Engineering
Languages : en
Pages : 326
Book Description
This title provides a comprehensive overview of all aspects of the mechanical behavior of concrete, including such features as its elastoplasticity, its compressive and tensile strength, its behavior over time (including creep and shrinkage, cracking and fatigue) as well as modeling techniques and its response to various stimuli. As such, it will be required reading for anyone wishing to increase their knowledge in this area.
Mechanical Behavior of Concrete
Author: Jean-Michel Torrenti
Publisher: John Wiley & Sons
ISBN: 1118622308
Category : Technology & Engineering
Languages : en
Pages : 326
Book Description
This title provides a comprehensive overview of all aspects of the mechanical behavior of concrete, including such features as its elastoplasticity, its compressive and tensile strength, its behavior over time (including creep and shrinkage, cracking and fatigue) as well as modeling techniques and its response to various stimuli. As such, it will be required reading for anyone wishing to increase their knowledge in this area.
Publisher: John Wiley & Sons
ISBN: 1118622308
Category : Technology & Engineering
Languages : en
Pages : 326
Book Description
This title provides a comprehensive overview of all aspects of the mechanical behavior of concrete, including such features as its elastoplasticity, its compressive and tensile strength, its behavior over time (including creep and shrinkage, cracking and fatigue) as well as modeling techniques and its response to various stimuli. As such, it will be required reading for anyone wishing to increase their knowledge in this area.
3D Printing of Concrete
Author: Arnaud Perrot
Publisher: John Wiley & Sons
ISBN: 1786303418
Category : Technology & Engineering
Languages : en
Pages : 176
Book Description
The introduction of digital manufacturing techniques, such as 3D printing applied to concrete material, opens up new perspectives on the way in which buildings are designed. Research on this theme is thriving and there is a high rate of innovation related to concrete. At the same time, the first life-size constructions made from printed concrete are emerging from the ground. This book presents state-of-the-art knowledge on the different printing processes as well as on the concrete material that must adapt to these new manufacturing techniques, such as new hardware and new printers for concrete. The possibilities in terms of architectural design are discussed as well as the pathways that remain to be uncovered. The book also explores the challenges that researchers and companies expect to overcome as they get closer to democratizing this potential revolution that is the digital manufacturing of concrete.
Publisher: John Wiley & Sons
ISBN: 1786303418
Category : Technology & Engineering
Languages : en
Pages : 176
Book Description
The introduction of digital manufacturing techniques, such as 3D printing applied to concrete material, opens up new perspectives on the way in which buildings are designed. Research on this theme is thriving and there is a high rate of innovation related to concrete. At the same time, the first life-size constructions made from printed concrete are emerging from the ground. This book presents state-of-the-art knowledge on the different printing processes as well as on the concrete material that must adapt to these new manufacturing techniques, such as new hardware and new printers for concrete. The possibilities in terms of architectural design are discussed as well as the pathways that remain to be uncovered. The book also explores the challenges that researchers and companies expect to overcome as they get closer to democratizing this potential revolution that is the digital manufacturing of concrete.
Application of Fracture Mechanics to Cementitious Composites
Author: S.P. Shah
Publisher: Springer Science & Business Media
ISBN: 9400951213
Category : Science
Languages : en
Pages : 701
Book Description
Portland cement concrete is a relatively brittle material. As a result, mechanical behavior of concrete, conventionally reinforced concrete, prestressed concrete, and fiber reinforced concrete is critically influenced by crack propagation. It is, thus, not surprising that attempts are being made to apply the concepts of fracture mechanics to quantify the resistance to cracking in cementious composites. The field of fracture mechanics originated in the 1920's with A. A. Griffith's work on fracture of brittle materials such as glass. Its most significant applications, however, have been for controlling brittle fracture and fatigue failure of metallic structures such as pressure vessels, airplanes, ships and pipe lines. Considerable development has occurred in the last twenty years in modifying Griffith's ideas or in proposing new concepts to account for the ductility typical of metals. As a result of these efforts, standard testing techniques have been available to obtain fracture parameters for metals, and design based on these parameters are included in relevant specifications. Many attempts have been made, in the last two decades or so, to apply the fracture mechanics concepts to cement, mortar, con crete and reinforced concrete. So far, these attempts have not led to a unique set of material parameters which can quantify the resistance of these cementitious composites to fracture. No standard testing methods and a generally accepted theoretical analysis are established for concrete as they are for metals.
Publisher: Springer Science & Business Media
ISBN: 9400951213
Category : Science
Languages : en
Pages : 701
Book Description
Portland cement concrete is a relatively brittle material. As a result, mechanical behavior of concrete, conventionally reinforced concrete, prestressed concrete, and fiber reinforced concrete is critically influenced by crack propagation. It is, thus, not surprising that attempts are being made to apply the concepts of fracture mechanics to quantify the resistance to cracking in cementious composites. The field of fracture mechanics originated in the 1920's with A. A. Griffith's work on fracture of brittle materials such as glass. Its most significant applications, however, have been for controlling brittle fracture and fatigue failure of metallic structures such as pressure vessels, airplanes, ships and pipe lines. Considerable development has occurred in the last twenty years in modifying Griffith's ideas or in proposing new concepts to account for the ductility typical of metals. As a result of these efforts, standard testing techniques have been available to obtain fracture parameters for metals, and design based on these parameters are included in relevant specifications. Many attempts have been made, in the last two decades or so, to apply the fracture mechanics concepts to cement, mortar, con crete and reinforced concrete. So far, these attempts have not led to a unique set of material parameters which can quantify the resistance of these cementitious composites to fracture. No standard testing methods and a generally accepted theoretical analysis are established for concrete as they are for metals.
Simulation of Fresh Concrete Flow
Author: Nicolas Roussel
Publisher: Springer Science & Business Media
ISBN: 9401788847
Category : Technology & Engineering
Languages : en
Pages : 166
Book Description
This work deals with numerical simulations of fresh concrete flows. After the first introductory chapter dealing with the various physical phenomena involved in flows of fresh cementitious materials, the aim of the second chapter is to give an overview of the work carried out on simulation of flow of cement-based materials using computational fluid dynamics (CFD). This includes governing equations, constitutive equations, analytical and numerical solutions, and examples showing simulations of testing, mixing and castings. The third chapter focuses on the application of Discrete Element Method (DEM) in simulating the flow of fresh concrete. The fourth chapter is an introductory text about numerical errors both in CFD and DEM whereas the fifth and last chapter give some recent examples of numerical simulations developed by various authors in order to simulate the presence of grains or fibers in a non-Newtonian cement matrix.
Publisher: Springer Science & Business Media
ISBN: 9401788847
Category : Technology & Engineering
Languages : en
Pages : 166
Book Description
This work deals with numerical simulations of fresh concrete flows. After the first introductory chapter dealing with the various physical phenomena involved in flows of fresh cementitious materials, the aim of the second chapter is to give an overview of the work carried out on simulation of flow of cement-based materials using computational fluid dynamics (CFD). This includes governing equations, constitutive equations, analytical and numerical solutions, and examples showing simulations of testing, mixing and castings. The third chapter focuses on the application of Discrete Element Method (DEM) in simulating the flow of fresh concrete. The fourth chapter is an introductory text about numerical errors both in CFD and DEM whereas the fifth and last chapter give some recent examples of numerical simulations developed by various authors in order to simulate the presence of grains or fibers in a non-Newtonian cement matrix.
Compressive Strength of Concrete
Author: Pavel Krivenko
Publisher: BoD – Books on Demand
ISBN: 1789855675
Category : Technology & Engineering
Languages : en
Pages : 166
Book Description
Concrete made using mineral cements, the raw materials which on earth are practically endless, is known as one of the oldest building materials and during the last decades of the twentieth century has become a dominant building material for general use. At the same time, the requirements of the quality of concrete and its performance properties, in particular compressive strength, durability, economical efficiency, and low negative impact of its manufacture on the environment have not yet been completely met. Bearing these requirements in mind, researchers and engineers worldwide are working on how to satisfy these requirements. This book has been written by researchers and experts in the field and provides the state of the art on recent progress achieved on the properties of concrete, including concrete in which industrial by-products are utilized. The book is dedicated to graduate students, researchers, and practicing engineers in related fields.
Publisher: BoD – Books on Demand
ISBN: 1789855675
Category : Technology & Engineering
Languages : en
Pages : 166
Book Description
Concrete made using mineral cements, the raw materials which on earth are practically endless, is known as one of the oldest building materials and during the last decades of the twentieth century has become a dominant building material for general use. At the same time, the requirements of the quality of concrete and its performance properties, in particular compressive strength, durability, economical efficiency, and low negative impact of its manufacture on the environment have not yet been completely met. Bearing these requirements in mind, researchers and engineers worldwide are working on how to satisfy these requirements. This book has been written by researchers and experts in the field and provides the state of the art on recent progress achieved on the properties of concrete, including concrete in which industrial by-products are utilized. The book is dedicated to graduate students, researchers, and practicing engineers in related fields.
Cement-Based Composites
Author: Andrzej M. Brandt
Publisher: CRC Press
ISBN: 0203889037
Category : Technology & Engineering
Languages : en
Pages : 536
Book Description
Cement-Based Composites takes a different approach from most other books in the field by viewing concrete as an advanced composite material, and by considering the properties and behaviour of cement-based materials from this stance. It deals particularly, but not exclusively, with newer forms of cement-based materials. This new edition takes a critical approach to the subject as well as presenting up-to-date knowledge. Emphasis is given to non-conventional reinforcement and design methods, problems at the materials' interfaces and to the durability of structures. High strength composites and novel forms of cement-based composites are described in detail. After a basic introduction the book explores the various components of these materials and their properties. It then deals with mechanical properties and considers characteristics under various loading and environmental conditions, and concludes by examining design, optimization and economics with particular emphasis on high-performance concretes. Researchers, graduate students and practising engineers will find this book valuable.
Publisher: CRC Press
ISBN: 0203889037
Category : Technology & Engineering
Languages : en
Pages : 536
Book Description
Cement-Based Composites takes a different approach from most other books in the field by viewing concrete as an advanced composite material, and by considering the properties and behaviour of cement-based materials from this stance. It deals particularly, but not exclusively, with newer forms of cement-based materials. This new edition takes a critical approach to the subject as well as presenting up-to-date knowledge. Emphasis is given to non-conventional reinforcement and design methods, problems at the materials' interfaces and to the durability of structures. High strength composites and novel forms of cement-based composites are described in detail. After a basic introduction the book explores the various components of these materials and their properties. It then deals with mechanical properties and considers characteristics under various loading and environmental conditions, and concludes by examining design, optimization and economics with particular emphasis on high-performance concretes. Researchers, graduate students and practising engineers will find this book valuable.
Steel Fiber Reinforced Concrete
Author: Harvinder Singh
Publisher: Springer
ISBN: 981102507X
Category : Technology & Engineering
Languages : en
Pages : 181
Book Description
This book discusses design aspects of steel fiber-reinforced concrete (SFRC) members, including the behavior of the SFRC and its modeling. It also examines the effect of various parameters governing the response of SFRC members in detail. Unlike other publications available in the form of guidelines, which mainly describe design methods based on experimental results, it describes the basic concepts and principles of designing structural members using SFRC as a structural material, predominantly subjected to flexure and shear. Although applications to special structures, such as bridges, retaining walls, tanks and silos are not specifically covered, the fundamental design concepts remain the same and can easily be extended to these elements. It introduces the principles and related theories for predicting the role of steel fibers in reinforcing concrete members concisely and logically, and presents various material models to predict the response of SFRC members in detail. These are then gradually extended to develop an analytical flexural model for the analysis and design of SFRC members. The lack of such a discussion is a major hindrance to the adoption of SFRC as a structural material in routine design practice. This book helps users appraise the role of fiber as reinforcement in concrete members used alone and/or along with conventional rebars. Applications to singly and doubly reinforced beams and slabs are illustrated with examples, using both SFRC and conventional reinforced concrete as a structural material. The influence of the addition of steel fibers on various mechanical properties of the SFRC members is discussed in detail, which is invaluable in helping designers and engineers create optimum designs. Lastly, it describes the generally accepted methods for specifying the steel fibers at the site along with the SFRC mixing methods, storage and transport and explains in detail methods to validate the adopted design. This book is useful to practicing engineers, researchers, and students.
Publisher: Springer
ISBN: 981102507X
Category : Technology & Engineering
Languages : en
Pages : 181
Book Description
This book discusses design aspects of steel fiber-reinforced concrete (SFRC) members, including the behavior of the SFRC and its modeling. It also examines the effect of various parameters governing the response of SFRC members in detail. Unlike other publications available in the form of guidelines, which mainly describe design methods based on experimental results, it describes the basic concepts and principles of designing structural members using SFRC as a structural material, predominantly subjected to flexure and shear. Although applications to special structures, such as bridges, retaining walls, tanks and silos are not specifically covered, the fundamental design concepts remain the same and can easily be extended to these elements. It introduces the principles and related theories for predicting the role of steel fibers in reinforcing concrete members concisely and logically, and presents various material models to predict the response of SFRC members in detail. These are then gradually extended to develop an analytical flexural model for the analysis and design of SFRC members. The lack of such a discussion is a major hindrance to the adoption of SFRC as a structural material in routine design practice. This book helps users appraise the role of fiber as reinforcement in concrete members used alone and/or along with conventional rebars. Applications to singly and doubly reinforced beams and slabs are illustrated with examples, using both SFRC and conventional reinforced concrete as a structural material. The influence of the addition of steel fibers on various mechanical properties of the SFRC members is discussed in detail, which is invaluable in helping designers and engineers create optimum designs. Lastly, it describes the generally accepted methods for specifying the steel fibers at the site along with the SFRC mixing methods, storage and transport and explains in detail methods to validate the adopted design. This book is useful to practicing engineers, researchers, and students.
Removal and Reuse of Hardened Concrete Corrosion
Author: ACI Committee 555
Publisher:
ISBN: 9780870310614
Category : Concrete
Languages : en
Pages : 26
Book Description
Publisher:
ISBN: 9780870310614
Category : Concrete
Languages : en
Pages : 26
Book Description
Concrete Recycling
Author: Francois de Larrard
Publisher: CRC Press
ISBN: 1351052802
Category : Technology & Engineering
Languages : en
Pages : 816
Book Description
The concrete industry consumes thirty billion tons of aggregate annually, almost all from non-renewable natural sources. Demolition produces a growing amount of materials which are legally usable and readily available. If not used locally they must be transported and landfilled. Also, demolition generally takes place close to new construction sites: recycling promotes shorter transportation distances, a must for improving the overall environmental footprint of the construction world. This book encompasses all aspects of this current trend: How recycled aggregates are obtained and their properties. Improving their quality through phase selection or separation. Incorporating concrete from demolition into the cement production process and the properties of the product obtained. What are the properties of concrete incorporating recycled concrete aggregates at various replacement levels, throughout the lifecycle of the material, from the fresh state to the long-term, including durability and fire. How recycled concrete can be optimised for various uses. How this new structural material can be managed in reinforced concrete construction. Solid experience from a series of experimental sites, and drawing on the Recybéton project, which lasted more than 5 years and gathered about 50 partners (from both academia and industry). Specific issues in recycled concrete quality control. National practices in the most advanced countries, and the main national and European standards. Achieving a sustainable process.
Publisher: CRC Press
ISBN: 1351052802
Category : Technology & Engineering
Languages : en
Pages : 816
Book Description
The concrete industry consumes thirty billion tons of aggregate annually, almost all from non-renewable natural sources. Demolition produces a growing amount of materials which are legally usable and readily available. If not used locally they must be transported and landfilled. Also, demolition generally takes place close to new construction sites: recycling promotes shorter transportation distances, a must for improving the overall environmental footprint of the construction world. This book encompasses all aspects of this current trend: How recycled aggregates are obtained and their properties. Improving their quality through phase selection or separation. Incorporating concrete from demolition into the cement production process and the properties of the product obtained. What are the properties of concrete incorporating recycled concrete aggregates at various replacement levels, throughout the lifecycle of the material, from the fresh state to the long-term, including durability and fire. How recycled concrete can be optimised for various uses. How this new structural material can be managed in reinforced concrete construction. Solid experience from a series of experimental sites, and drawing on the Recybéton project, which lasted more than 5 years and gathered about 50 partners (from both academia and industry). Specific issues in recycled concrete quality control. National practices in the most advanced countries, and the main national and European standards. Achieving a sustainable process.
Basic Principles of Concrete Structures
Author: Xianglin Gu
Publisher: Springer
ISBN: 3662485656
Category : Technology & Engineering
Languages : en
Pages : 620
Book Description
Based on the latest version of designing codes both for buildings and bridges (GB50010-2010 and JTG D62-2004), this book starts from steel and concrete materials, whose properties are very important to the mechanical behavior of concrete structural members. Step by step, analysis of reinforced and prestressed concrete members under basic loading types (tension, compression, flexure, shearing and torsion) and environmental actions are introduced. The characteristic of the book that distinguishes it from other textbooks on concrete structures is that more emphasis has been laid on the basic theories of reinforced concrete and the application of the basic theories in design of new structures and analysis of existing structures. Examples and problems in each chapter are carefully designed to cover every important knowledge point. As a basic course for undergraduates majoring in civil engineering, this course is different from either the previously learnt mechanics courses or the design courses to be learnt. Compared with mechanics courses, the basic theories of reinforced concrete structures cannot be solely derived by theoretical analysis. And compared with design courses, this course emphasizes the introduction of basic theories rather than simply being a translation of design specifications. The book will focus on both the theoretical derivations and the engineering practices.
Publisher: Springer
ISBN: 3662485656
Category : Technology & Engineering
Languages : en
Pages : 620
Book Description
Based on the latest version of designing codes both for buildings and bridges (GB50010-2010 and JTG D62-2004), this book starts from steel and concrete materials, whose properties are very important to the mechanical behavior of concrete structural members. Step by step, analysis of reinforced and prestressed concrete members under basic loading types (tension, compression, flexure, shearing and torsion) and environmental actions are introduced. The characteristic of the book that distinguishes it from other textbooks on concrete structures is that more emphasis has been laid on the basic theories of reinforced concrete and the application of the basic theories in design of new structures and analysis of existing structures. Examples and problems in each chapter are carefully designed to cover every important knowledge point. As a basic course for undergraduates majoring in civil engineering, this course is different from either the previously learnt mechanics courses or the design courses to be learnt. Compared with mechanics courses, the basic theories of reinforced concrete structures cannot be solely derived by theoretical analysis. And compared with design courses, this course emphasizes the introduction of basic theories rather than simply being a translation of design specifications. The book will focus on both the theoretical derivations and the engineering practices.