Maximum Likelihood Estimation and Inference PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Maximum Likelihood Estimation and Inference PDF full book. Access full book title Maximum Likelihood Estimation and Inference by Russell B. Millar. Download full books in PDF and EPUB format.

Maximum Likelihood Estimation and Inference

Maximum Likelihood Estimation and Inference PDF Author: Russell B. Millar
Publisher: John Wiley & Sons
ISBN: 1119977711
Category : Mathematics
Languages : en
Pages : 286

Book Description
This book takes a fresh look at the popular and well-established method of maximum likelihood for statistical estimation and inference. It begins with an intuitive introduction to the concepts and background of likelihood, and moves through to the latest developments in maximum likelihood methodology, including general latent variable models and new material for the practical implementation of integrated likelihood using the free ADMB software. Fundamental issues of statistical inference are also examined, with a presentation of some of the philosophical debates underlying the choice of statistical paradigm. Key features: Provides an accessible introduction to pragmatic maximum likelihood modelling. Covers more advanced topics, including general forms of latent variable models (including non-linear and non-normal mixed-effects and state-space models) and the use of maximum likelihood variants, such as estimating equations, conditional likelihood, restricted likelihood and integrated likelihood. Adopts a practical approach, with a focus on providing the relevant tools required by researchers and practitioners who collect and analyze real data. Presents numerous examples and case studies across a wide range of applications including medicine, biology and ecology. Features applications from a range of disciplines, with implementation in R, SAS and/or ADMB. Provides all program code and software extensions on a supporting website. Confines supporting theory to the final chapters to maintain a readable and pragmatic focus of the preceding chapters. This book is not just an accessible and practical text about maximum likelihood, it is a comprehensive guide to modern maximum likelihood estimation and inference. It will be of interest to readers of all levels, from novice to expert. It will be of great benefit to researchers, and to students of statistics from senior undergraduate to graduate level. For use as a course text, exercises are provided at the end of each chapter.

Maximum Likelihood Estimation and Inference

Maximum Likelihood Estimation and Inference PDF Author: Russell B. Millar
Publisher: John Wiley & Sons
ISBN: 1119977711
Category : Mathematics
Languages : en
Pages : 286

Book Description
This book takes a fresh look at the popular and well-established method of maximum likelihood for statistical estimation and inference. It begins with an intuitive introduction to the concepts and background of likelihood, and moves through to the latest developments in maximum likelihood methodology, including general latent variable models and new material for the practical implementation of integrated likelihood using the free ADMB software. Fundamental issues of statistical inference are also examined, with a presentation of some of the philosophical debates underlying the choice of statistical paradigm. Key features: Provides an accessible introduction to pragmatic maximum likelihood modelling. Covers more advanced topics, including general forms of latent variable models (including non-linear and non-normal mixed-effects and state-space models) and the use of maximum likelihood variants, such as estimating equations, conditional likelihood, restricted likelihood and integrated likelihood. Adopts a practical approach, with a focus on providing the relevant tools required by researchers and practitioners who collect and analyze real data. Presents numerous examples and case studies across a wide range of applications including medicine, biology and ecology. Features applications from a range of disciplines, with implementation in R, SAS and/or ADMB. Provides all program code and software extensions on a supporting website. Confines supporting theory to the final chapters to maintain a readable and pragmatic focus of the preceding chapters. This book is not just an accessible and practical text about maximum likelihood, it is a comprehensive guide to modern maximum likelihood estimation and inference. It will be of interest to readers of all levels, from novice to expert. It will be of great benefit to researchers, and to students of statistics from senior undergraduate to graduate level. For use as a course text, exercises are provided at the end of each chapter.

Dynamic Nonlinear Econometric Models

Dynamic Nonlinear Econometric Models PDF Author: Benedikt M. Pötscher
Publisher: Springer Science & Business Media
ISBN: 3662034867
Category : Business & Economics
Languages : en
Pages : 307

Book Description
Many relationships in economics, and also in other fields, are both dynamic and nonlinear. A major advance in econometrics over the last fifteen years has been the development of a theory of estimation and inference for dy namic nonlinear models. This advance was accompanied by improvements in computer technology that facilitate the practical implementation of such estimation methods. In two articles in Econometric Reviews, i.e., Pötscher and Prucha {1991a,b), we provided -an expository discussion of the basic structure of the asymptotic theory of M-estimators in dynamic nonlinear models and a review of the literature up to the beginning of this decade. Among others, the class of M-estimators contains least mean distance estimators (includ ing maximum likelihood estimators) and generalized method of moment estimators. The present book expands and revises the discussion in those articles. It is geared towards the professional econometrician or statistician. Besides reviewing the literature we also presented in the above men tioned articles a number of then new results. One example is a consis tency result for the case where the identifiable uniqueness condition fails.

Maximum Likelihood for Social Science

Maximum Likelihood for Social Science PDF Author: Michael D. Ward
Publisher: Cambridge University Press
ISBN: 1107185823
Category : Political Science
Languages : en
Pages : 327

Book Description
Practical, example-driven introduction to maximum likelihood for the social sciences. Emphasizes computation in R, model selection and interpretation.

Foundations Of Modern Econometrics: A Unified Approach

Foundations Of Modern Econometrics: A Unified Approach PDF Author: Yongmiao Hong
Publisher: World Scientific
ISBN: 9811220204
Category : Business & Economics
Languages : en
Pages : 523

Book Description
Modern economies are full of uncertainties and risk. Economics studies resource allocations in an uncertain market environment. As a generally applicable quantitative analytic tool for uncertain events, probability and statistics have been playing an important role in economic research. Econometrics is statistical analysis of economic and financial data. In the past four decades or so, economics has witnessed a so-called 'empirical revolution' in its research paradigm, and as the main methodology in empirical studies in economics, econometrics has been playing an important role. It has become an indispensable part of training in modern economics, business and management.This book develops a coherent set of econometric theory, methods and tools for economic models. It is written as a textbook for graduate students in economics, business, management, statistics, applied mathematics, and related fields. It can also be used as a reference book on econometric theory by scholars who may be interested in both theoretical and applied econometrics.

Maximum Likelihood Estimation for Sample Surveys

Maximum Likelihood Estimation for Sample Surveys PDF Author: Raymond L. Chambers
Publisher: CRC Press
ISBN: 1584886323
Category : Mathematics
Languages : en
Pages : 393

Book Description
Sample surveys provide data used by researchers in a large range of disciplines to analyze important relationships using well-established and widely used likelihood methods. The methods used to select samples often result in the sample differing in important ways from the target population and standard application of likelihood methods can lead to biased and inefficient estimates. Maximum Likelihood Estimation for Sample Surveys presents an overview of likelihood methods for the analysis of sample survey data that account for the selection methods used, and includes all necessary background material on likelihood inference. It covers a range of data types, including multilevel data, and is illustrated by many worked examples using tractable and widely used models. It also discusses more advanced topics, such as combining data, non-response, and informative sampling. The book presents and develops a likelihood approach for fitting models to sample survey data. It explores and explains how the approach works in tractable though widely used models for which we can make considerable analytic progress. For less tractable models numerical methods are ultimately needed to compute the score and information functions and to compute the maximum likelihood estimates of the model parameters. For these models, the book shows what has to be done conceptually to develop analyses to the point that numerical methods can be applied. Designed for statisticians who are interested in the general theory of statistics, Maximum Likelihood Estimation for Sample Surveys is also aimed at statisticians focused on fitting models to sample survey data, as well as researchers who study relationships among variables and whose sources of data include surveys.

Econometric Applications of Maximum Likelihood Methods

Econometric Applications of Maximum Likelihood Methods PDF Author: Jan Salomon Cramer
Publisher: CUP Archive
ISBN: 9780521378574
Category : Business & Economics
Languages : en
Pages : 232

Book Description
The advent of electronic computing permits the empirical analysis of economic models of far greater subtlety and rigour than before, when many interesting ideas were not followed up because the calculations involved made this impracticable. The estimation and testing of these more intricate models is usually based on the method of Maximum Likelihood, which is a well-established branch of mathematical statistics. Its use in econometrics has led to the development of a number of special techniques; the specific conditions of econometric research moreover demand certain changes in the interpretation of the basic argument. This book is a self-contained introduction to this field. It consists of three parts. The first deals with general features of Maximum Likelihood methods; the second with linear and nonlinear regression; and the third with discrete choice and related micro-economic models. Readers should already be familiar with elementary statistical theory, with applied econometric research papers, or with the literature on the mathematical basis of Maximum Likelihood theory. They can also try their hand at some advanced econometric research of their own.

From Data to Model

From Data to Model PDF Author: Jan C. Willems
Publisher: Springer Science & Business Media
ISBN: 3642750079
Category : Business & Economics
Languages : en
Pages : 254

Book Description
The problem of obtaining dynamical models directly from an observed time-series occurs in many fields of application. There are a number of possible approaches to this problem. In this volume a number of such points of view are exposed: the statistical time series approach, a theory of guaranted performance, and finally a deterministic approximation approach. This volume is an out-growth of a number of get-togethers sponsered by the Systems and Decision Sciences group of the International Institute of Applied Systems Analysis (IIASA) in Laxenburg, Austria. The hospitality and support of this organization is gratefully acknowledged. Jan Willems Groningen, the Netherlands May 1989 TABLE OF CONTENTS Linear System Identification- A Survey page 1 M. Deistler A Tutorial on Hankel-Norm Approximation 26 K. Glover A Deterministic Approach to Approximate Modelling 49 C. Heij and J. C. Willems Identification - a Theory of Guaranteed Estimates 135 A. B. Kurzhanski Statistical Aspects of Model Selection 215 R. Shibata Index 241 Addresses of Authors 246 LINEAR SYSTEM IDENTIFICATION· A SURVEY M. DEISTLER Abstract In this paper we give an introductory survey on the theory of identification of (in general MIMO) linear systems from (discrete) time series data. The main parts are: Structure theory for linear systems, asymptotic properties of maximum likelihood type estimators, estimation of the dynamic specification by methods based on information criteria and finally, extensions and alternative approaches such as identification of unstable systems and errors-in-variables. Keywords Linear systems, parametrization, maximum likelihood estimation, information criteria, errors-in-variables.

Festschrift for Lucien Le Cam

Festschrift for Lucien Le Cam PDF Author: David Pollard
Publisher: Springer Science & Business Media
ISBN: 1461218802
Category : Mathematics
Languages : en
Pages : 456

Book Description
Contributed in honour of Lucien Le Cam on the occasion of his 70th birthday, the papers reflect the immense influence that his work has had on modern statistics. They include discussions of his seminal ideas, historical perspectives, and contributions to current research - spanning two centuries with a new translation of a paper of Daniel Bernoulli. The volume begins with a paper by Aalen, which describes Le Cams role in the founding of the martingale analysis of point processes, and ends with one by Yu, exploring the position of just one of Le Cams ideas in modern semiparametric theory. The other 27 papers touch on areas such as local asymptotic normality, contiguity, efficiency, admissibility, minimaxity, empirical process theory, and biological medical, and meteorological applications - where Le Cams insights have laid the foundations for new theories.

Maximum Likelihood Estimation

Maximum Likelihood Estimation PDF Author: Scott R. Eliason
Publisher: SAGE
ISBN: 9780803941076
Category : Mathematics
Languages : en
Pages : 100

Book Description
This is a short introduction to Maximum Likelihood (ML) Estimation. It provides a general modeling framework that utilizes the tools of ML methods to outline a flexible modeling strategy that accommodates cases from the simplest linear models (such as the normal error regression model) to the most complex nonlinear models linking endogenous and exogenous variables with non-normal distributions. Using examples to illustrate the techniques of finding ML estimators and estimates, the author discusses what properties are desirable in an estimator, basic techniques for finding maximum likelihood solutions, the general form of the covariance matrix for ML estimates, the sampling distribution of ML estimators; the use of ML in the normal as well as other distributions, and some useful illustrations of likelihoods.

Forecasting: principles and practice

Forecasting: principles and practice PDF Author: Rob J Hyndman
Publisher: OTexts
ISBN: 0987507117
Category : Business & Economics
Languages : en
Pages : 380

Book Description
Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.