Parabolic Problems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Parabolic Problems PDF full book. Access full book title Parabolic Problems by Joachim Escher. Download full books in PDF and EPUB format.

Parabolic Problems

Parabolic Problems PDF Author: Joachim Escher
Publisher: Springer Science & Business Media
ISBN: 3034800754
Category : Mathematics
Languages : en
Pages : 712

Book Description
The volume originates from the 'Conference on Nonlinear Parabolic Problems' held in celebration of Herbert Amann's 70th birthday at the Banach Center in Bedlewo, Poland. It features a collection of peer-reviewed research papers by recognized experts highlighting recent advances in fields of Herbert Amann's interest such as nonlinear evolution equations, fluid dynamics, quasi-linear parabolic equations and systems, functional analysis, and more.

Parabolic Problems

Parabolic Problems PDF Author: Joachim Escher
Publisher: Springer Science & Business Media
ISBN: 3034800754
Category : Mathematics
Languages : en
Pages : 712

Book Description
The volume originates from the 'Conference on Nonlinear Parabolic Problems' held in celebration of Herbert Amann's 70th birthday at the Banach Center in Bedlewo, Poland. It features a collection of peer-reviewed research papers by recognized experts highlighting recent advances in fields of Herbert Amann's interest such as nonlinear evolution equations, fluid dynamics, quasi-linear parabolic equations and systems, functional analysis, and more.

Optimal Control of Partial Differential Equations

Optimal Control of Partial Differential Equations PDF Author: Fredi Tröltzsch
Publisher: American Mathematical Society
ISBN: 1470476444
Category : Mathematics
Languages : en
Pages : 417

Book Description
Optimal control theory is concerned with finding control functions that minimize cost functions for systems described by differential equations. The methods have found widespread applications in aeronautics, mechanical engineering, the life sciences, and many other disciplines. This book focuses on optimal control problems where the state equation is an elliptic or parabolic partial differential equation. Included are topics such as the existence of optimal solutions, necessary optimality conditions and adjoint equations, second-order sufficient conditions, and main principles of selected numerical techniques. It also contains a survey on the Karush-Kuhn-Tucker theory of nonlinear programming in Banach spaces. The exposition begins with control problems with linear equations, quadratic cost functions and control constraints. To make the book self-contained, basic facts on weak solutions of elliptic and parabolic equations are introduced. Principles of functional analysis are introduced and explained as they are needed. Many simple examples illustrate the theory and its hidden difficulties. This start to the book makes it fairly self-contained and suitable for advanced undergraduates or beginning graduate students. Advanced control problems for nonlinear partial differential equations are also discussed. As prerequisites, results on boundedness and continuity of solutions to semilinear elliptic and parabolic equations are addressed. These topics are not yet readily available in books on PDEs, making the exposition also interesting for researchers. Alongside the main theme of the analysis of problems of optimal control, Tröltzsch also discusses numerical techniques. The exposition is confined to brief introductions into the basic ideas in order to give the reader an impression of how the theory can be realized numerically. After reading this book, the reader will be familiar with the main principles of the numerical analysis of PDE-constrained optimization.

Advances in Differential Equations

Advances in Differential Equations PDF Author:
Publisher:
ISBN:
Category : Differential equations
Languages : en
Pages : 378

Book Description


Beyond Sobolev and Besov

Beyond Sobolev and Besov PDF Author: Cornelia Schneider
Publisher: Springer Nature
ISBN: 3030751392
Category : Mathematics
Languages : en
Pages : 339

Book Description
This book investigates the close relation between quite sophisticated function spaces, the regularity of solutions of partial differential equations (PDEs) in these spaces and the link with the numerical solution of such PDEs. It consists of three parts. Part I, the introduction, provides a quick guide to function spaces and the general concepts needed. Part II is the heart of the monograph and deals with the regularity of solutions in Besov and fractional Sobolev spaces. In particular, it studies regularity estimates of PDEs of elliptic, parabolic and hyperbolic type on non smooth domains. Linear as well as nonlinear equations are considered and special attention is paid to PDEs of parabolic type. For the classes of PDEs investigated a justification is given for the use of adaptive numerical schemes. Finally, the last part has a slightly different focus and is concerned with traces in several function spaces such as Besov– and Triebel–Lizorkin spaces, but also in quite general smoothness Morrey spaces. The book is aimed at researchers and graduate students working in regularity theory of PDEs and function spaces, who are looking for a comprehensive treatment of the above listed topics.

The Eighteenth International Conference on Management Science and Engineering Management

The Eighteenth International Conference on Management Science and Engineering Management PDF Author: Jiuping Xu
Publisher: Springer Nature
ISBN: 9819750989
Category :
Languages : en
Pages : 1703

Book Description


Mathematical Reviews

Mathematical Reviews PDF Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 916

Book Description


Oblique Derivative Problems for Elliptic Equations in Conical Domains

Oblique Derivative Problems for Elliptic Equations in Conical Domains PDF Author: Mikhail Borsuk
Publisher: Springer Nature
ISBN: 3031283813
Category : Mathematics
Languages : en
Pages : 334

Book Description
The aim of our book is the investigation of the behavior of strong and weak solutions to the regular oblique derivative problems for second order elliptic equations, linear and quasi-linear, in the neighborhood of the boundary singularities. The main goal is to establish the precise exponent of the solution decrease rate and under the best possible conditions. The question on the behavior of solutions of elliptic boundary value problems near boundary singularities is of great importance for its many applications, e.g., in hydrodynamics, aerodynamics, fracture mechanics, in the geodesy etc. Only few works are devoted to the regular oblique derivative problems for second order elliptic equations in non-smooth domains. All results are given with complete proofs. The monograph will be of interest to graduate students and specialists in elliptic boundary value problems and their applications.

Tools for PDE

Tools for PDE PDF Author: Michael E. Taylor
Publisher: American Mathematical Soc.
ISBN: 0821843788
Category : Mathematics
Languages : en
Pages : 274

Book Description
Developing three related tools that are useful in the analysis of partial differential equations (PDEs) arising from the classical study of singular integral operators, this text considers pseudodifferential operators, paradifferential operators, and layer potentials.

Deutsche Nationalbibliografie

Deutsche Nationalbibliografie PDF Author: Die deutsche Nationalbibliothek
Publisher:
ISBN:
Category :
Languages : de
Pages : 830

Book Description


Stochastic Evolution Equations

Stochastic Evolution Equations PDF Author: Wilfried Grecksch
Publisher: De Gruyter Akademie Forschung
ISBN:
Category : Mathematics
Languages : en
Pages : 188

Book Description
The authors give a self-contained exposition of the theory of stochastic evolution equations. Elements of infinite dimensional analysis, martingale theory in Hilbert spaces, stochastic integrals, stochastic convolutions are applied. Existence and uniqueness theorems for stochastic evolution equations in Hilbert spaces in the sense of the semigroup theory, the theory of evolution operators, and monotonous operators in rigged Hilbert spaces are discussed. Relationships between the different concepts are demonstrated. The results are used to concrete stochastic partial differential equations like parabolic and hyperbolic Ito equations and random constitutive equations of elastic viscoplastic materials. Furthermore, stochastic evolution equations in rigged Hilbert spaces are approximated by time discretization methods.