Matrix Variate Distributions PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Matrix Variate Distributions PDF full book. Access full book title Matrix Variate Distributions by A K Gupta. Download full books in PDF and EPUB format.

Matrix Variate Distributions

Matrix Variate Distributions PDF Author: A K Gupta
Publisher: CRC Press
ISBN: 1351433008
Category : Mathematics
Languages : en
Pages : 382

Book Description
Useful in physics, economics, psychology, and other fields, random matrices play an important role in the study of multivariate statistical methods. Until now, however, most of the material on random matrices could only be found scattered in various statistical journals. Matrix Variate Distributions gathers and systematically presents most of the recent developments in continuous matrix variate distribution theory and includes new results. After a review of the essential background material, the authors investigate the range of matrix variate distributions, including: matrix variate normal distribution Wishart distribution Matrix variate t-distribution Matrix variate beta distribution F-distribution Matrix variate Dirichlet distribution Matrix quadratic forms With its inclusion of new results, Matrix Variate Distributions promises to stimulate further research and help advance the field of multivariate statistical analysis.

Matrix Variate Distributions

Matrix Variate Distributions PDF Author: A K Gupta
Publisher: CRC Press
ISBN: 1351433008
Category : Mathematics
Languages : en
Pages : 382

Book Description
Useful in physics, economics, psychology, and other fields, random matrices play an important role in the study of multivariate statistical methods. Until now, however, most of the material on random matrices could only be found scattered in various statistical journals. Matrix Variate Distributions gathers and systematically presents most of the recent developments in continuous matrix variate distribution theory and includes new results. After a review of the essential background material, the authors investigate the range of matrix variate distributions, including: matrix variate normal distribution Wishart distribution Matrix variate t-distribution Matrix variate beta distribution F-distribution Matrix variate Dirichlet distribution Matrix quadratic forms With its inclusion of new results, Matrix Variate Distributions promises to stimulate further research and help advance the field of multivariate statistical analysis.

The Laplace Distribution and Generalizations

The Laplace Distribution and Generalizations PDF Author: Samuel Kotz
Publisher: Springer Science & Business Media
ISBN: 146120173X
Category : Mathematics
Languages : en
Pages : 358

Book Description
This book describes the inferential and modeling advantages that this distribution, together with its generalizations and modifications, offers. The exposition systematically unfolds with many examples, tables, illustrations, and exercises. A comprehensive index and extensive bibliography also make this book an ideal text for a senior undergraduate and graduate seminar on statistical distributions, or for a short half-term academic course in statistics, applied probability, and finance.

Contributions to complex matrix variate distributions theory

Contributions to complex matrix variate distributions theory PDF Author: Daya Krishna Nagar
Publisher: Universidad de Antioquia
ISBN: 9587142691
Category : Distribution (Probability theory)
Languages : en
Pages : 128

Book Description
"Random matrices (real or complex) play an important role in the study of multivariate statistical methods. They have been found useful in physics, engineering, economics, psychology and other fields of investigation. Contributions to Complex Matrix Variate Distribution Theory gives a comprehensive coverage of complex random matrices, and defines a number of new complex matrix variate distributions. It also gathers and systematiclly [sic] presents several results on zonal polynomials, invariant polynomials and hypergeometric functions of Hermitian matrices which until now could only be found scattered in various mathematical or statistical journals. This book provides a compact self-contained introduction to the complex matrix variate distribution theory and includes new results that will be a useful source to all those working in the area, stimulate further research, and help advance this field. This book, valuable to researchers, graduate students, and instructors in multivariate statistical analysis, will also interest researchers in a variety of areas including physicists, engineers, psychometricians, and econometricians."--Back cover

Stability Problems for Stochastic Models: Theory and Applications

Stability Problems for Stochastic Models: Theory and Applications PDF Author: Alexander Zeifman
Publisher: MDPI
ISBN: 3036504524
Category : Mathematics
Languages : en
Pages : 370

Book Description
The aim of this Special Issue of Mathematics is to commemorate the outstanding Russian mathematician Vladimir Zolotarev, whose 90th birthday will be celebrated on February 27th, 2021. The present Special Issue contains a collection of new papers by participants in sessions of the International Seminar on Stability Problems for Stochastic Models founded by Zolotarev. Along with research in probability distributions theory, limit theorems of probability theory, stochastic processes, mathematical statistics, and queuing theory, this collection contains papers dealing with applications of stochastic models in modeling of pension schemes, modeling of extreme precipitation, construction of statistical indicators of scientific publication importance, and other fields.

Bilinear Forms and Zonal Polynomials

Bilinear Forms and Zonal Polynomials PDF Author: Arak M. Mathai
Publisher: Springer Science & Business Media
ISBN: 1461242428
Category : Mathematics
Languages : en
Pages : 385

Book Description
The book deals with bilinear forms in real random vectors and their generalizations as well as zonal polynomials and their applications in handling generalized quadratic and bilinear forms. The book is mostly self-contained. It starts from basic principles and brings the readers to the current research level in these areas. It is developed with detailed proofs and illustrative examples for easy readability and self-study. Several exercises are proposed at the end of the chapters. The complicated topic of zonal polynomials is explained in detail in this book. The book concentrates on the theoretical developments in all the topics covered. Some applications are pointed out but no detailed application to any particular field is attempted. This book can be used as a textbook for a one-semester graduate course on quadratic and bilinear forms and/or on zonal polynomials. It is hoped that this book will be a valuable reference source for graduate students and research workers in the areas of mathematical statistics, quadratic and bilinear forms and their generalizations, zonal polynomials, invariant polynomials and related topics, and will benefit statisticians, mathematicians and other theoretical and applied scientists who use any of the above topics in their areas. Chapter 1 gives the preliminaries needed in later chapters, including some Jacobians of matrix transformations. Chapter 2 is devoted to bilinear forms in Gaussian real ran dom vectors, their properties, and techniques specially developed to deal with bilinear forms where the standard methods for handling quadratic forms become complicated.

Elliptically Contoured Models in Statistics

Elliptically Contoured Models in Statistics PDF Author: Arjun K. Gupta
Publisher: Springer Science & Business Media
ISBN: 9401116466
Category : Mathematics
Languages : en
Pages : 336

Book Description
In multivariate statistical analysis, elliptical distributions have recently provided an alternative to the normal model. Most of the work, however, is spread out in journals throughout the world and is not easily accessible to the investigators. Fang, Kotz, and Ng presented a systematic study of multivariate elliptical distributions, however, they did not discuss the matrix variate case. Recently Fang and Zhang have summarized the results of generalized multivariate analysis which include vector as well as the matrix variate distributions. On the other hand, Fang and Anderson collected research papers on matrix variate elliptical distributions, many of them published for the first time in English. They published very rich material on the topic, but the results are given in paper form which does not provide a unified treatment of the theory. Therefore, it seemed appropriate to collect the most important results on the theory of matrix variate elliptically contoured distributions available in the literature and organize them in a unified manner that can serve as an introduction to the subject. The book will be useful for researchers, teachers, and graduate students in statistics and related fields whose interests involve multivariate statistical analysis. Parts of this book were presented by Arjun K Gupta as a one semester course at Bowling Green State University. Some new results have also been included which generalize the results in Fang and Zhang. Knowledge of matrix algebra and statistics at the level of Anderson is assumed. However, Chapter 1 summarizes some results of matrix algebra.

Statistical Distributions in Scientific Work

Statistical Distributions in Scientific Work PDF Author: Charles Taillie
Publisher: Springer Science & Business Media
ISBN: 9400985495
Category : Mathematics
Languages : en
Pages : 458

Book Description
Proceedings of the NATO Advanced Study Institute, Trieste, Italy, July 10-August 1, 1980

Jacobians Of Matrix Transformation And Functions Of Matrix Arguments

Jacobians Of Matrix Transformation And Functions Of Matrix Arguments PDF Author: Arak M Mathai
Publisher: World Scientific Publishing Company
ISBN: 9813105070
Category : Mathematics
Languages : en
Pages : 449

Book Description
This book concentrates on the topic of evaluation of Jacobians in some specific linear as well as nonlinear matrix transformations, in the real and complex cases, which are widely applied in the statistical, physical, engineering, biological and social sciences. It aims to develop some techniques systematically so that anyone with a little exposure to multivariable calculus can easily follow the steps and understand the various methods by which the Jacobians in complicated matrix transformations are evaluated. The material is developed slowly, with lots of worked examples, aimed at self-study. Some exercises are also given, at the end of each section.The book is a valuable reference for statisticians, engineers, physicists, econometricians, applied mathematicians and people working in many other areas. It can be used for a one-semester graduate level course on Jacobians and functions of matrix argument.

Elliptically Contoured Models in Statistics and Portfolio Theory

Elliptically Contoured Models in Statistics and Portfolio Theory PDF Author: Arjun K. Gupta
Publisher: Springer Science & Business Media
ISBN: 1461481546
Category : Mathematics
Languages : en
Pages : 332

Book Description
Elliptically Contoured Models in Statistics and Portfolio Theory fully revises the first detailed introduction to the theory of matrix variate elliptically contoured distributions. There are two additional chapters, and all the original chapters of this classic text have been updated. Resources in this book will be valuable for researchers, practitioners, and graduate students in statistics and related fields of finance and engineering. Those interested in multivariate statistical analysis and its application to portfolio theory will find this text immediately useful. ​In multivariate statistical analysis, elliptical distributions have recently provided an alternative to the normal model. Elliptical distributions have also increased their popularity in finance because of the ability to model heavy tails usually observed in real data. Most of the work, however, is spread out in journals throughout the world and is not easily accessible to the investigators. A noteworthy function of this book is the collection of the most important results on the theory of matrix variate elliptically contoured distributions that were previously only available in the journal-based literature. The content is organized in a unified manner that can serve an a valuable introduction to the subject. ​

An Introduction to Matrix Concentration Inequalities

An Introduction to Matrix Concentration Inequalities PDF Author: Joel Tropp
Publisher:
ISBN: 9781601988386
Category : Computers
Languages : en
Pages : 256

Book Description
Random matrices now play a role in many areas of theoretical, applied, and computational mathematics. It is therefore desirable to have tools for studying random matrices that are flexible, easy to use, and powerful. Over the last fifteen years, researchers have developed a remarkable family of results, called matrix concentration inequalities, that achieve all of these goals. This monograph offers an invitation to the field of matrix concentration inequalities. It begins with some history of random matrix theory; it describes a flexible model for random matrices that is suitable for many problems; and it discusses the most important matrix concentration results. To demonstrate the value of these techniques, the presentation includes examples drawn from statistics, machine learning, optimization, combinatorics, algorithms, scientific computing, and beyond.