An Introduction to the Theory of Canonical Matrices PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download An Introduction to the Theory of Canonical Matrices PDF full book. Access full book title An Introduction to the Theory of Canonical Matrices by H. W. Turnbull. Download full books in PDF and EPUB format.

An Introduction to the Theory of Canonical Matrices

An Introduction to the Theory of Canonical Matrices PDF Author: H. W. Turnbull
Publisher: Courier Corporation
ISBN: 0486153460
Category : Mathematics
Languages : en
Pages : 222

Book Description
Elementary transformations and bilinear and quadratic forms; canonical reduction of equivalent matrices; subgroups of the group of equivalent transformations; and rational and classical canonical forms. 1952 edition. 275 problems.

An Introduction to the Theory of Canonical Matrices

An Introduction to the Theory of Canonical Matrices PDF Author: H. W. Turnbull
Publisher: Courier Corporation
ISBN: 0486153460
Category : Mathematics
Languages : en
Pages : 222

Book Description
Elementary transformations and bilinear and quadratic forms; canonical reduction of equivalent matrices; subgroups of the group of equivalent transformations; and rational and classical canonical forms. 1952 edition. 275 problems.

Jordan Canonical Form

Jordan Canonical Form PDF Author: Steven Weintraub
Publisher: Springer Nature
ISBN: 3031023986
Category : Mathematics
Languages : en
Pages : 96

Book Description
Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. The JCF of a linear transformation, or of a matrix, encodes all of the structural information about that linear transformation, or matrix. This book is a careful development of JCF. After beginning with background material, we introduce Jordan Canonical Form and related notions: eigenvalues, (generalized) eigenvectors, and the characteristic and minimum polynomials. We decide the question of diagonalizability, and prove the Cayley-Hamilton theorem. Then we present a careful and complete proof of the fundamental theorem: Let V be a finite-dimensional vector space over the field of complex numbers C, and let T : V → V be a linear transformation. Then T has a Jordan Canonical Form. This theorem has an equivalent statement in terms of matrices: Let A be a square matrix with complex entries. Then A is similar to a matrix J in Jordan Canonical Form, i.e., there is an invertible matrix P and a matrix J in Jordan Canonical Form with A = PJP-1. We further present an algorithm to find P and J, assuming that one can factor the characteristic polynomial of A. In developing this algorithm we introduce the eigenstructure picture (ESP) of a matrix, a pictorial representation that makes JCF clear. The ESP of A determines J, and a refinement, the labeled eigenstructure picture (lESP) of A, determines P as well. We illustrate this algorithm with copious examples, and provide numerous exercises for the reader. Table of Contents: Fundamentals on Vector Spaces and Linear Transformations / The Structure of a Linear Transformation / An Algorithm for Jordan Canonical Form and Jordan Basis

Jordan Canonical Form

Jordan Canonical Form PDF Author: Steven H. Weintraub
Publisher: Morgan & Claypool Publishers
ISBN: 1608452514
Category : Technology & Engineering
Languages : en
Pages : 108

Book Description
Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. The JCF of a linear transformation, or of a matrix, encodes all of the structural information about that linear transformation, or matrix. This book is a careful development of JCF. After beginning with background material, we introduce Jordan Canonical Form and related notions: eigenvalues, (generalized) eigenvectors, and the characteristic and minimum polynomials. We decide the question of diagonalizability, and prove the Cayley-Hamilton theorem. Then we present a careful and complete proof of the fundamental theorem: Let V be a finite-dimensional vector space over the field of complex numbers C, and let T : V → V be a linear transformation. Then T has a Jordan Canonical Form. This theorem has an equivalent statement in terms of matrices: Let A be a square matrix with complex entries. Then A is similar to a matrix J in Jordan Canonical Form, i.e., there is an invertible matrix P and a matrix J in Jordan Canonical Form with A = PJP-1. We further present an algorithm to find P and J, assuming that one can factor the characteristic polynomial of A. In developing this algorithm we introduce the eigenstructure picture (ESP) of a matrix, a pictorial representation that makes JCF clear. The ESP of A determines J, and a refinement, the labeled eigenstructure picture (lESP) of A, determines P as well. We illustrate this algorithm with copious examples, and provide numerous exercises for the reader.

Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics

Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics PDF Author: Dario A. Bini
Publisher: Birkhäuser
ISBN: 3319491822
Category : Mathematics
Languages : en
Pages : 757

Book Description
This book presents a collection of expository and research papers on various topics in matrix and operator theory, contributed by several experts on the occasion of Albrecht Böttcher’s 60th birthday. Albrecht Böttcher himself has made substantial contributions to the subject in the past. The book also includes a biographical essay, a complete bibliography of Albrecht Böttcher’s work and brief informal notes on personal encounters with him. The book is of interest to graduate and advanced undergraduate students majoring in mathematics, researchers in matrix and operator theory as well as engineers and applied mathematicians.

Matrix Canonical Forms

Matrix Canonical Forms PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 549

Book Description


Advanced Topics in Linear Algebra

Advanced Topics in Linear Algebra PDF Author: Kevin O'Meara
Publisher: OUP USA
ISBN: 0199793735
Category : Mathematics
Languages : en
Pages : 423

Book Description
This book develops the Weyr matrix canonical form, a largely unknown cousin of the Jordan form. It explores novel applications, including include matrix commutativity problems, approximate simultaneous diagonalization, and algebraic geometry. Module theory and algebraic geometry are employed but with self-contained accounts.

Matrix Theory

Matrix Theory PDF Author: Robert Piziak
Publisher: CRC Press
ISBN: 1584886250
Category : Mathematics
Languages : en
Pages : 570

Book Description
In 1990, the National Science Foundation recommended that every college mathematics curriculum should include a second course in linear algebra. In answer to this recommendation, Matrix Theory: From Generalized Inverses to Jordan Form provides the material for a second semester of linear algebra that probes introductory linear algebra concepts while also exploring topics not typically covered in a sophomore-level class. Tailoring the material to advanced undergraduate and beginning graduate students, the authors offer instructors flexibility in choosing topics from the book. The text first focuses on the central problem of linear algebra: solving systems of linear equations. It then discusses LU factorization, derives Sylvester's rank formula, introduces full-rank factorization, and describes generalized inverses. After discussions on norms, QR factorization, and orthogonality, the authors prove the important spectral theorem. They also highlight the primary decomposition theorem, Schur's triangularization theorem, singular value decomposition, and the Jordan canonical form theorem. The book concludes with a chapter on multilinear algebra. With this classroom-tested text students can delve into elementary linear algebra ideas at a deeper level and prepare for further study in matrix theory and abstract algebra.

Jordan Canonical Form

Jordan Canonical Form PDF Author: Steven H. Weintraub
Publisher: Morgan & Claypool Publishers
ISBN: 1598298046
Category : Algebras, Linear
Languages : en
Pages : 94

Book Description
Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. In this book we develop JCF and show how to apply it to solving systems of differential equations. We first develop JCF, including the concepts involved in it-eigenvalues, eigenvectors, and chains of generalized eigenvectors. We begin with the diagonalizable case and then proceed to the general case, but we do not present a complete proof. Indeed, our interest here is not in JCF per se, but in one of its important applications. We devote the bulk of our attention in this book to showing how to apply JCF to solve systems of constant-coefficient first order differential equations, where it is a very effective tool. We cover all situations-homogeneous and inhomogeneous systems; real and complex eigenvalues. We also treat the closely related topic of the matrix exponential. Our discussion is mostly confined to the 2-by-2 and 3-by-3 cases, and we present a wealth of examples that illustrate all the possibilities in these cases (and of course, exercises for the reader). Table of Contents: Jordan Canonical Form / Solving Systems of Linear Differential Equations / Background Results: Bases, Coordinates, and Matrices / Properties of the Complex Exponential

On the Canonical Form of a Matrix

On the Canonical Form of a Matrix PDF Author: Roy Dexter Sheffield
Publisher:
ISBN:
Category :
Languages : en
Pages : 138

Book Description


Linear Algebra and Matrix Analysis for Statistics

Linear Algebra and Matrix Analysis for Statistics PDF Author: Sudipto Banerjee
Publisher: CRC Press
ISBN: 1420095382
Category : Mathematics
Languages : en
Pages : 586

Book Description
Linear Algebra and Matrix Analysis for Statistics offers a gradual exposition to linear algebra without sacrificing the rigor of the subject. It presents both the vector space approach and the canonical forms in matrix theory. The book is as self-contained as possible, assuming no prior knowledge of linear algebra. The authors first address the rudimentary mechanics of linear systems using Gaussian elimination and the resulting decompositions. They introduce Euclidean vector spaces using less abstract concepts and make connections to systems of linear equations wherever possible. After illustrating the importance of the rank of a matrix, they discuss complementary subspaces, oblique projectors, orthogonality, orthogonal projections and projectors, and orthogonal reduction. The text then shows how the theoretical concepts developed are handy in analyzing solutions for linear systems. The authors also explain how determinants are useful for characterizing and deriving properties concerning matrices and linear systems. They then cover eigenvalues, eigenvectors, singular value decomposition, Jordan decomposition (including a proof), quadratic forms, and Kronecker and Hadamard products. The book concludes with accessible treatments of advanced topics, such as linear iterative systems, convergence of matrices, more general vector spaces, linear transformations, and Hilbert spaces.