Author: Paul Lockhart
Publisher: Harvard University Press
ISBN: 0674071174
Category : Mathematics
Languages : en
Pages : 264
Book Description
For seven years, Paul Lockhart’s A Mathematician’s Lament enjoyed a samizdat-style popularity in the mathematics underground, before demand prompted its 2009 publication to even wider applause and debate. An impassioned critique of K–12 mathematics education, it outlined how we shortchange students by introducing them to math the wrong way. Here Lockhart offers the positive side of the math education story by showing us how math should be done. Measurement offers a permanent solution to math phobia by introducing us to mathematics as an artful way of thinking and living. In conversational prose that conveys his passion for the subject, Lockhart makes mathematics accessible without oversimplifying. He makes no more attempt to hide the challenge of mathematics than he does to shield us from its beautiful intensity. Favoring plain English and pictures over jargon and formulas, he succeeds in making complex ideas about the mathematics of shape and motion intuitive and graspable. His elegant discussion of mathematical reasoning and themes in classical geometry offers proof of his conviction that mathematics illuminates art as much as science. Lockhart leads us into a universe where beautiful designs and patterns float through our minds and do surprising, miraculous things. As we turn our thoughts to symmetry, circles, cylinders, and cones, we begin to see that almost anyone can “do the math” in a way that brings emotional and aesthetic rewards. Measurement is an invitation to summon curiosity, courage, and creativity in order to experience firsthand the playful excitement of mathematical work.
Measurement
Author: Paul Lockhart
Publisher: Harvard University Press
ISBN: 0674071174
Category : Mathematics
Languages : en
Pages : 264
Book Description
For seven years, Paul Lockhart’s A Mathematician’s Lament enjoyed a samizdat-style popularity in the mathematics underground, before demand prompted its 2009 publication to even wider applause and debate. An impassioned critique of K–12 mathematics education, it outlined how we shortchange students by introducing them to math the wrong way. Here Lockhart offers the positive side of the math education story by showing us how math should be done. Measurement offers a permanent solution to math phobia by introducing us to mathematics as an artful way of thinking and living. In conversational prose that conveys his passion for the subject, Lockhart makes mathematics accessible without oversimplifying. He makes no more attempt to hide the challenge of mathematics than he does to shield us from its beautiful intensity. Favoring plain English and pictures over jargon and formulas, he succeeds in making complex ideas about the mathematics of shape and motion intuitive and graspable. His elegant discussion of mathematical reasoning and themes in classical geometry offers proof of his conviction that mathematics illuminates art as much as science. Lockhart leads us into a universe where beautiful designs and patterns float through our minds and do surprising, miraculous things. As we turn our thoughts to symmetry, circles, cylinders, and cones, we begin to see that almost anyone can “do the math” in a way that brings emotional and aesthetic rewards. Measurement is an invitation to summon curiosity, courage, and creativity in order to experience firsthand the playful excitement of mathematical work.
Publisher: Harvard University Press
ISBN: 0674071174
Category : Mathematics
Languages : en
Pages : 264
Book Description
For seven years, Paul Lockhart’s A Mathematician’s Lament enjoyed a samizdat-style popularity in the mathematics underground, before demand prompted its 2009 publication to even wider applause and debate. An impassioned critique of K–12 mathematics education, it outlined how we shortchange students by introducing them to math the wrong way. Here Lockhart offers the positive side of the math education story by showing us how math should be done. Measurement offers a permanent solution to math phobia by introducing us to mathematics as an artful way of thinking and living. In conversational prose that conveys his passion for the subject, Lockhart makes mathematics accessible without oversimplifying. He makes no more attempt to hide the challenge of mathematics than he does to shield us from its beautiful intensity. Favoring plain English and pictures over jargon and formulas, he succeeds in making complex ideas about the mathematics of shape and motion intuitive and graspable. His elegant discussion of mathematical reasoning and themes in classical geometry offers proof of his conviction that mathematics illuminates art as much as science. Lockhart leads us into a universe where beautiful designs and patterns float through our minds and do surprising, miraculous things. As we turn our thoughts to symmetry, circles, cylinders, and cones, we begin to see that almost anyone can “do the math” in a way that brings emotional and aesthetic rewards. Measurement is an invitation to summon curiosity, courage, and creativity in order to experience firsthand the playful excitement of mathematical work.
A Mathematician's Lament
Author: Paul Lockhart
Publisher: Bellevue Literary Press
ISBN: 1934137332
Category : Mathematics
Languages : en
Pages : 85
Book Description
“One of the best critiques of current K-12 mathematics education I have ever seen, written by a first-class research mathematician who elected to devote his teaching career to K-12 education.” —Keith Devlin, NPR’s “Math Guy” A brilliant research mathematician reveals math to be a creative art form on par with painting, poetry, and sculpture, and rejects the standard anxiety-producing teaching methods used in most schools today. Witty and accessible, Paul Lockhart’s controversial approach will provoke spirited debate among educators and parents alike, altering the way we think about math forever. Paul Lockhart is the author of Arithmetic, Measurement, and A Mathematician’s Lament. He has taught mathematics at Brown University, University of California, Santa Cruz, and to K-12 level students at St. Ann’s School in Brooklyn, New York.
Publisher: Bellevue Literary Press
ISBN: 1934137332
Category : Mathematics
Languages : en
Pages : 85
Book Description
“One of the best critiques of current K-12 mathematics education I have ever seen, written by a first-class research mathematician who elected to devote his teaching career to K-12 education.” —Keith Devlin, NPR’s “Math Guy” A brilliant research mathematician reveals math to be a creative art form on par with painting, poetry, and sculpture, and rejects the standard anxiety-producing teaching methods used in most schools today. Witty and accessible, Paul Lockhart’s controversial approach will provoke spirited debate among educators and parents alike, altering the way we think about math forever. Paul Lockhart is the author of Arithmetic, Measurement, and A Mathematician’s Lament. He has taught mathematics at Brown University, University of California, Santa Cruz, and to K-12 level students at St. Ann’s School in Brooklyn, New York.
Measurement Uncertainty
Author: Simona Salicone
Publisher: Springer Science & Business Media
ISBN: 0387463283
Category : Mathematics
Languages : en
Pages : 235
Book Description
The expression of uncertainty in measurement poses a challenge since it involves physical, mathematical, and philosophical issues. This problem is intensified by the limitations of the probabilistic approach used by the current standard (the GUM Instrumentation Standard). This text presents an alternative approach. It makes full use of the mathematical theory of evidence to express the uncertainty in measurements. Coverage provides an overview of the current standard, then pinpoints and constructively resolves its limitations. Numerous examples throughout help explain the book’s unique approach.
Publisher: Springer Science & Business Media
ISBN: 0387463283
Category : Mathematics
Languages : en
Pages : 235
Book Description
The expression of uncertainty in measurement poses a challenge since it involves physical, mathematical, and philosophical issues. This problem is intensified by the limitations of the probabilistic approach used by the current standard (the GUM Instrumentation Standard). This text presents an alternative approach. It makes full use of the mathematical theory of evidence to express the uncertainty in measurements. Coverage provides an overview of the current standard, then pinpoints and constructively resolves its limitations. Numerous examples throughout help explain the book’s unique approach.
The Britannica Guide to Numbers and Measurement
Author: William L. Hosch Associate Editor, Science and Technology
Publisher: The Rosen Publishing Group, Inc
ISBN: 1615301089
Category : Juvenile Nonfiction
Languages : en
Pages : 288
Book Description
Offers an overview of the development of numbers, their expression in mathematics and measurement, and profiles of the visionaries who saw order amidst the numbers.
Publisher: The Rosen Publishing Group, Inc
ISBN: 1615301089
Category : Juvenile Nonfiction
Languages : en
Pages : 288
Book Description
Offers an overview of the development of numbers, their expression in mathematics and measurement, and profiles of the visionaries who saw order amidst the numbers.
Abstract Measurement Theory
Author: Louis Narens
Publisher: MIT Press (MA)
ISBN:
Category : Mathematics
Languages : en
Pages : 368
Book Description
This book presents a theory of measurement, one that is "abstract" in that it is concerned with highly general axiomatizations of empirical and qualitative settings and how these can be represented quantitatively.
Publisher: MIT Press (MA)
ISBN:
Category : Mathematics
Languages : en
Pages : 368
Book Description
This book presents a theory of measurement, one that is "abstract" in that it is concerned with highly general axiomatizations of empirical and qualitative settings and how these can be represented quantitatively.
The Mathematics of Data
Author: Michael W. Mahoney
Publisher: American Mathematical Soc.
ISBN: 1470435756
Category : Computers
Languages : en
Pages : 340
Book Description
Nothing provided
Publisher: American Mathematical Soc.
ISBN: 1470435756
Category : Computers
Languages : en
Pages : 340
Book Description
Nothing provided
First Steps in Mathematics
Author: Sue Willis
Publisher: First Steps
ISBN: 9780975998687
Category : Mathematics
Languages : en
Pages :
Book Description
Provides teachers with a range of practical tools to improve the mathematical learning for all students
Publisher: First Steps
ISBN: 9780975998687
Category : Mathematics
Languages : en
Pages :
Book Description
Provides teachers with a range of practical tools to improve the mathematical learning for all students
Just a Little Bit
Author: Ann Tompert
Publisher: Houghton Mifflin Harcourt
ISBN: 9780395778760
Category : Juvenile Fiction
Languages : en
Pages : 38
Book Description
For use in schools and libraries only. When Mouse and Elephant decide to go on the seesaw, Mouse needs a lot of help from other animals before they can go up and down.
Publisher: Houghton Mifflin Harcourt
ISBN: 9780395778760
Category : Juvenile Fiction
Languages : en
Pages : 38
Book Description
For use in schools and libraries only. When Mouse and Elephant decide to go on the seesaw, Mouse needs a lot of help from other animals before they can go up and down.
Measure, Integration & Real Analysis
Author: Sheldon Axler
Publisher: Springer Nature
ISBN: 3030331431
Category : Mathematics
Languages : en
Pages : 430
Book Description
This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics. Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn. Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability. Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online. For errata and updates, visit https://measure.axler.net/
Publisher: Springer Nature
ISBN: 3030331431
Category : Mathematics
Languages : en
Pages : 430
Book Description
This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics. Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn. Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability. Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online. For errata and updates, visit https://measure.axler.net/
Big Ideas of Early Mathematics
Author: The Early Math Collaborative- Erikson Institute
Publisher: Pearson Higher Ed
ISBN: 0133259951
Category : Education
Languages : en
Pages : 209
Book Description
This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. Note: This is the bound book only and does not include access to the Enhanced Pearson eText. To order the Enhanced Pearson eText packaged with a bound book, use ISBN 0133548635. In this unique guide, classroom teachers, coaches, curriculum coordinators, college students, and teacher educators get a practical look at the foundational concepts and skills of early mathematics, and see how to implement them in their early childhood classrooms. Big Ideas of Early Mathematics presents the skills educators need to organize for mathematics teaching and learning during the early years. For teachers of children ages three through six, the book provides foundations for further mathematics learning and helps facilitate long-term mathematical understanding. The Enhanced Pearson eText features embedded video. Improve mastery and retention with the Enhanced Pearson eText* The Enhanced Pearson eText provides a rich, interactive learning environment designed to improve student mastery of content. The Enhanced Pearson eText is: Engaging. The new interactive, multimedia learning features were developed by the authors and other subject-matter experts to deepen and enrich the learning experience. Convenient. Enjoy instant online access from your computer or download the Pearson eText App to read on or offline on your iPad® and Android® tablet.* Affordable. Experience the advantages of the Enhanced Pearson eText for 40-65% less than a print bound book. * The Enhanced eText features are only available in the Pearson eText format. They are not available in third-party eTexts or downloads. *The Pearson eText App is available on Google Play and in the App Store. It requires Android OS 3.1-4, a 7” or 10” tablet, or iPad iOS 5.0 or later.
Publisher: Pearson Higher Ed
ISBN: 0133259951
Category : Education
Languages : en
Pages : 209
Book Description
This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. Note: This is the bound book only and does not include access to the Enhanced Pearson eText. To order the Enhanced Pearson eText packaged with a bound book, use ISBN 0133548635. In this unique guide, classroom teachers, coaches, curriculum coordinators, college students, and teacher educators get a practical look at the foundational concepts and skills of early mathematics, and see how to implement them in their early childhood classrooms. Big Ideas of Early Mathematics presents the skills educators need to organize for mathematics teaching and learning during the early years. For teachers of children ages three through six, the book provides foundations for further mathematics learning and helps facilitate long-term mathematical understanding. The Enhanced Pearson eText features embedded video. Improve mastery and retention with the Enhanced Pearson eText* The Enhanced Pearson eText provides a rich, interactive learning environment designed to improve student mastery of content. The Enhanced Pearson eText is: Engaging. The new interactive, multimedia learning features were developed by the authors and other subject-matter experts to deepen and enrich the learning experience. Convenient. Enjoy instant online access from your computer or download the Pearson eText App to read on or offline on your iPad® and Android® tablet.* Affordable. Experience the advantages of the Enhanced Pearson eText for 40-65% less than a print bound book. * The Enhanced eText features are only available in the Pearson eText format. They are not available in third-party eTexts or downloads. *The Pearson eText App is available on Google Play and in the App Store. It requires Android OS 3.1-4, a 7” or 10” tablet, or iPad iOS 5.0 or later.