Author: Ashok N. Katti
Publisher: Createspace Independent Publishing Platform
ISBN: 9781530501991
Category :
Languages : en
Pages : 300
Book Description
See the back of the book's cover for a description.
Mathematical Theory of Special and General Relativity
A Mathematical Journey to Relativity
Author: Wladimir-Georges Boskoff
Publisher: Springer Nature
ISBN: 303154823X
Category :
Languages : en
Pages : 556
Book Description
Publisher: Springer Nature
ISBN: 303154823X
Category :
Languages : en
Pages : 556
Book Description
The Mathematical Theory of Relativity
Author: A. S. Eddington
Publisher: Alpha Edition
ISBN: 9789354036392
Category : History
Languages : en
Pages : 258
Book Description
This book has been considered by academicians and scholars of great significance and value to literature. This forms a part of the knowledge base for future generations. So that the book is never forgotten we have represented this book in a print format as the same form as it was originally first published. Hence any marks or annotations seen are left intentionally to preserve its true nature.
Publisher: Alpha Edition
ISBN: 9789354036392
Category : History
Languages : en
Pages : 258
Book Description
This book has been considered by academicians and scholars of great significance and value to literature. This forms a part of the knowledge base for future generations. So that the book is never forgotten we have represented this book in a print format as the same form as it was originally first published. Hence any marks or annotations seen are left intentionally to preserve its true nature.
The General Theory of Relativity
Author: Farook Rahaman
Publisher: Cambridge University Press
ISBN: 1009032372
Category : Science
Languages : en
Pages : 428
Book Description
The book aims to expound the general theory of relativity with a mathematical point of view. Catering to the needs of postgraduate students and researchers in the field of astrophysics and mathematical physics, it offers the readers a comprehensive understanding of the advanced topics of the subject matter. It specifically discusses the mathematical foundation of tensor calculus, gives a background of geodesics, Einstein's field equations, linearised gravity, spacetime of spherically symmetric distribution of matter and black holes, and particle and photon orbits in spacetime. Apart from the formulation of general relativity, Lie derivatives and its applications, and causality of spacetime are also discussed in detail. Certain preliminary concepts of extrinsic curvature, Lagrangian formalism of general theory of relativity and 3 + 1 decomposition of space-time are covered and are provided in the book as appendices.
Publisher: Cambridge University Press
ISBN: 1009032372
Category : Science
Languages : en
Pages : 428
Book Description
The book aims to expound the general theory of relativity with a mathematical point of view. Catering to the needs of postgraduate students and researchers in the field of astrophysics and mathematical physics, it offers the readers a comprehensive understanding of the advanced topics of the subject matter. It specifically discusses the mathematical foundation of tensor calculus, gives a background of geodesics, Einstein's field equations, linearised gravity, spacetime of spherically symmetric distribution of matter and black holes, and particle and photon orbits in spacetime. Apart from the formulation of general relativity, Lie derivatives and its applications, and causality of spacetime are also discussed in detail. Certain preliminary concepts of extrinsic curvature, Lagrangian formalism of general theory of relativity and 3 + 1 decomposition of space-time are covered and are provided in the book as appendices.
The Geometry of Spacetime
Author: James J. Callahan
Publisher: Springer Science & Business Media
ISBN: 1475767366
Category : Science
Languages : en
Pages : 474
Book Description
Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's general relativity theory.
Publisher: Springer Science & Business Media
ISBN: 1475767366
Category : Science
Languages : en
Pages : 474
Book Description
Hermann Minkowski recast special relativity as essentially a new geometric structure for spacetime. This book looks at the ideas of both Einstein and Minkowski, and then introduces the theory of frames, surfaces and intrinsic geometry, developing the main implications of Einstein's general relativity theory.
General Relativity for Mathematicians
Author: R.K. Sachs
Publisher: Springer Science & Business Media
ISBN: 1461299039
Category : Mathematics
Languages : en
Pages : 302
Book Description
This is a book about physics, written for mathematicians. The readers we have in mind can be roughly described as those who: I. are mathematics graduate students with some knowledge of global differential geometry 2. have had the equivalent of freshman physics, and find popular accounts of astrophysics and cosmology interesting 3. appreciate mathematical elarity, but are willing to accept physical motiva tions for the mathematics in place of mathematical ones 4. are willing to spend time and effort mastering certain technical details, such as those in Section 1. 1. Each book disappoints so me readers. This one will disappoint: 1. physicists who want to use this book as a first course on differential geometry 2. mathematicians who think Lorentzian manifolds are wholly similar to Riemannian ones, or that, given a sufficiently good mathematical back ground, the essentials of a subject !ike cosmology can be learned without so me hard work on boring detaiis 3. those who believe vague philosophical arguments have more than historical and heuristic significance, that general relativity should somehow be "proved," or that axiomatization of this subject is useful 4. those who want an encyclopedic treatment (the books by Hawking-Ellis [1], Penrose [1], Weinberg [1], and Misner-Thorne-Wheeler [I] go further into the subject than we do; see also the survey article, Sachs-Wu [1]). 5. mathematicians who want to learn quantum physics or unified fieId theory (unfortunateIy, quantum physics texts all seem either to be for physicists, or merely concerned with formaI mathematics).
Publisher: Springer Science & Business Media
ISBN: 1461299039
Category : Mathematics
Languages : en
Pages : 302
Book Description
This is a book about physics, written for mathematicians. The readers we have in mind can be roughly described as those who: I. are mathematics graduate students with some knowledge of global differential geometry 2. have had the equivalent of freshman physics, and find popular accounts of astrophysics and cosmology interesting 3. appreciate mathematical elarity, but are willing to accept physical motiva tions for the mathematics in place of mathematical ones 4. are willing to spend time and effort mastering certain technical details, such as those in Section 1. 1. Each book disappoints so me readers. This one will disappoint: 1. physicists who want to use this book as a first course on differential geometry 2. mathematicians who think Lorentzian manifolds are wholly similar to Riemannian ones, or that, given a sufficiently good mathematical back ground, the essentials of a subject !ike cosmology can be learned without so me hard work on boring detaiis 3. those who believe vague philosophical arguments have more than historical and heuristic significance, that general relativity should somehow be "proved," or that axiomatization of this subject is useful 4. those who want an encyclopedic treatment (the books by Hawking-Ellis [1], Penrose [1], Weinberg [1], and Misner-Thorne-Wheeler [I] go further into the subject than we do; see also the survey article, Sachs-Wu [1]). 5. mathematicians who want to learn quantum physics or unified fieId theory (unfortunateIy, quantum physics texts all seem either to be for physicists, or merely concerned with formaI mathematics).
A Mathematical Introduction To General Relativity
Author: Amol Sasane
Publisher: World Scientific
ISBN: 9811243794
Category : Science
Languages : en
Pages : 500
Book Description
The book aims to give a mathematical presentation of the theory of general relativity (that is, spacetime-geometry-based gravitation theory) to advanced undergraduate mathematics students. Mathematicians will find spacetime physics presented in the definition-theorem-proof format familiar to them. The given precise mathematical definitions of physical notions help avoiding pitfalls, especially in the context of spacetime physics describing phenomena that are counter-intuitive to everyday experiences.In the first part, the differential geometry of smooth manifolds, which is needed to present the spacetime-based gravitation theory, is developed from scratch. Here, many of the illustrating examples are the Lorentzian manifolds which later serve as spacetime models. This has the twofold purpose of making the physics forthcoming in the second part relatable, and the mathematics learnt in the first part less dry. The book uses the modern coordinate-free language of semi-Riemannian geometry. Nevertheless, to familiarise the reader with the useful tool of coordinates for computations, and to bridge the gap with the physics literature, the link to coordinates is made through exercises, and via frequent remarks on how the two languages are related.In the second part, the focus is on physics, covering essential material of the 20th century spacetime-based view of gravity: energy-momentum tensor field of matter, field equation, spacetime examples, Newtonian approximation, geodesics, tests of the theory, black holes, and cosmological models of the universe.Prior knowledge of differential geometry or physics is not assumed. The book is intended for self-study, and the solutions to the (over 200) exercises are included.
Publisher: World Scientific
ISBN: 9811243794
Category : Science
Languages : en
Pages : 500
Book Description
The book aims to give a mathematical presentation of the theory of general relativity (that is, spacetime-geometry-based gravitation theory) to advanced undergraduate mathematics students. Mathematicians will find spacetime physics presented in the definition-theorem-proof format familiar to them. The given precise mathematical definitions of physical notions help avoiding pitfalls, especially in the context of spacetime physics describing phenomena that are counter-intuitive to everyday experiences.In the first part, the differential geometry of smooth manifolds, which is needed to present the spacetime-based gravitation theory, is developed from scratch. Here, many of the illustrating examples are the Lorentzian manifolds which later serve as spacetime models. This has the twofold purpose of making the physics forthcoming in the second part relatable, and the mathematics learnt in the first part less dry. The book uses the modern coordinate-free language of semi-Riemannian geometry. Nevertheless, to familiarise the reader with the useful tool of coordinates for computations, and to bridge the gap with the physics literature, the link to coordinates is made through exercises, and via frequent remarks on how the two languages are related.In the second part, the focus is on physics, covering essential material of the 20th century spacetime-based view of gravity: energy-momentum tensor field of matter, field equation, spacetime examples, Newtonian approximation, geodesics, tests of the theory, black holes, and cosmological models of the universe.Prior knowledge of differential geometry or physics is not assumed. The book is intended for self-study, and the solutions to the (over 200) exercises are included.
A Mathematical Journey to Quantum Mechanics
Author: Salvatore Capozziello
Publisher: Springer Nature
ISBN: 3030860981
Category : Science
Languages : en
Pages : 294
Book Description
This book provides an itinerary to quantum mechanics taking into account the basic mathematics to formulate it. Specifically, it features the main experiments and postulates of quantum mechanics pointing out their mathematical prominent aspects showing how physical concepts and mathematical tools are deeply intertwined. The material covers topics such as analytic mechanics in Newtonian, Lagrangian, and Hamiltonian formulations, theory of light as formulated in special relativity, and then why quantum mechanics is necessary to explain experiments like the double-split, atomic spectra, and photoelectric effect. The Schrödinger equation and its solutions are developed in detail. It is pointed out that, starting from the concept of the harmonic oscillator, it is possible to develop advanced quantum mechanics. Furthermore, the mathematics behind the Heisenberg uncertainty principle is constructed towards advanced quantum mechanical principles. Relativistic quantum mechanics is finally considered.The book is devoted to undergraduate students from University courses of Physics, Mathematics, Chemistry, and Engineering. It consists of 50 self-contained lectures, and any statement and theorem are demonstrated in detail. It is the companion book of "A Mathematical Journey to Relativity", by the same Authors, published by Springer in 2020.
Publisher: Springer Nature
ISBN: 3030860981
Category : Science
Languages : en
Pages : 294
Book Description
This book provides an itinerary to quantum mechanics taking into account the basic mathematics to formulate it. Specifically, it features the main experiments and postulates of quantum mechanics pointing out their mathematical prominent aspects showing how physical concepts and mathematical tools are deeply intertwined. The material covers topics such as analytic mechanics in Newtonian, Lagrangian, and Hamiltonian formulations, theory of light as formulated in special relativity, and then why quantum mechanics is necessary to explain experiments like the double-split, atomic spectra, and photoelectric effect. The Schrödinger equation and its solutions are developed in detail. It is pointed out that, starting from the concept of the harmonic oscillator, it is possible to develop advanced quantum mechanics. Furthermore, the mathematics behind the Heisenberg uncertainty principle is constructed towards advanced quantum mechanical principles. Relativistic quantum mechanics is finally considered.The book is devoted to undergraduate students from University courses of Physics, Mathematics, Chemistry, and Engineering. It consists of 50 self-contained lectures, and any statement and theorem are demonstrated in detail. It is the companion book of "A Mathematical Journey to Relativity", by the same Authors, published by Springer in 2020.
Mathematical Theory of General Relativity
Author: L. N. Katkar
Publisher:
ISBN: 9781842658062
Category : Science
Languages : en
Pages : 0
Book Description
Explores the laws of general relativity. The contents of the book will attract both mathematicians and physicists which provides motivation and applications of many ideas and powerful mathematical methods of modern analysis and differential geometry.
Publisher:
ISBN: 9781842658062
Category : Science
Languages : en
Pages : 0
Book Description
Explores the laws of general relativity. The contents of the book will attract both mathematicians and physicists which provides motivation and applications of many ideas and powerful mathematical methods of modern analysis and differential geometry.
General Relativity
Author: Robert M. Wald
Publisher: University of Chicago Press
ISBN: 0226870375
Category : Science
Languages : en
Pages : 507
Book Description
"Wald's book is clearly the first textbook on general relativity with a totally modern point of view; and it succeeds very well where others are only partially successful. The book includes full discussions of many problems of current interest which are not treated in any extant book, and all these matters are considered with perception and understanding."—S. Chandrasekhar "A tour de force: lucid, straightforward, mathematically rigorous, exacting in the analysis of the theory in its physical aspect."—L. P. Hughston, Times Higher Education Supplement "Truly excellent. . . . A sophisticated text of manageable size that will probably be read by every student of relativity, astrophysics, and field theory for years to come."—James W. York, Physics Today
Publisher: University of Chicago Press
ISBN: 0226870375
Category : Science
Languages : en
Pages : 507
Book Description
"Wald's book is clearly the first textbook on general relativity with a totally modern point of view; and it succeeds very well where others are only partially successful. The book includes full discussions of many problems of current interest which are not treated in any extant book, and all these matters are considered with perception and understanding."—S. Chandrasekhar "A tour de force: lucid, straightforward, mathematically rigorous, exacting in the analysis of the theory in its physical aspect."—L. P. Hughston, Times Higher Education Supplement "Truly excellent. . . . A sophisticated text of manageable size that will probably be read by every student of relativity, astrophysics, and field theory for years to come."—James W. York, Physics Today