Author: Dominik Wodarz
Publisher: World Scientific
ISBN: 9814481874
Category : Science
Languages : en
Pages : 266
Book Description
The book shows how mathematical and computational models can be used to study cancer biology. It introduces the concept of mathematical modeling and then applies it to a variety of topics in cancer biology. These include aspects of cancer initiation and progression, such as the somatic evolution of cells, genetic instability, and angiogenesis. The book also discusses the use of mathematical models for the analysis of therapeutic approaches such as chemotherapy, immunotherapy, and the use of oncolytic viruses.
Computational Biology Of Cancer: Lecture Notes And Mathematical Modeling
Author: Dominik Wodarz
Publisher: World Scientific
ISBN: 9814481874
Category : Science
Languages : en
Pages : 266
Book Description
The book shows how mathematical and computational models can be used to study cancer biology. It introduces the concept of mathematical modeling and then applies it to a variety of topics in cancer biology. These include aspects of cancer initiation and progression, such as the somatic evolution of cells, genetic instability, and angiogenesis. The book also discusses the use of mathematical models for the analysis of therapeutic approaches such as chemotherapy, immunotherapy, and the use of oncolytic viruses.
Publisher: World Scientific
ISBN: 9814481874
Category : Science
Languages : en
Pages : 266
Book Description
The book shows how mathematical and computational models can be used to study cancer biology. It introduces the concept of mathematical modeling and then applies it to a variety of topics in cancer biology. These include aspects of cancer initiation and progression, such as the somatic evolution of cells, genetic instability, and angiogenesis. The book also discusses the use of mathematical models for the analysis of therapeutic approaches such as chemotherapy, immunotherapy, and the use of oncolytic viruses.
Mathematical Models in Cell Biology and Cancer Chemotherapy
Author: M Eisen
Publisher:
ISBN: 9783642931277
Category :
Languages : en
Pages : 452
Book Description
Publisher:
ISBN: 9783642931277
Category :
Languages : en
Pages : 452
Book Description
Handbook of Cancer Models with Applications
Author: W. Y. Tan
Publisher: World Scientific
ISBN: 9812779485
Category : Political Science
Languages : en
Pages : 592
Book Description
Composed of contributions from an international team of leading researchers, this book pulls together the most recent research results in the field of cancer modeling to provide readers with the most advanced mathematical models of cancer and their applications.Topics included in the book cover oncogenetic trees, stochastic multistage models of carcinogenesis, effects of ionizing radiation on cell cycle and genomic instability, induction of DNA damage by ionizing radiation and its repair, epigenetic cancer models, bystander effects of radiation, multiple pathway models of human colon cancer, and stochastic models of metastasis. The book also provides some important applications of cancer models to the assessment of cancer risk associated with various hazardous environmental agents, to cancer screening by MRI, and to drug resistance in cancer chemotherapy. An updated statistical design and analysis of xenograft experiments as well as a statistical analysis of cancer occult clinical data are also provided.The book will serve as a useful source of reference for researchers in biomathematics, biostatistics and bioinformatics; for clinical investigators and medical doctors employing quantitative methods to develop procedures for cancer diagnosis, prevention, control and treatment; and for graduate students.
Publisher: World Scientific
ISBN: 9812779485
Category : Political Science
Languages : en
Pages : 592
Book Description
Composed of contributions from an international team of leading researchers, this book pulls together the most recent research results in the field of cancer modeling to provide readers with the most advanced mathematical models of cancer and their applications.Topics included in the book cover oncogenetic trees, stochastic multistage models of carcinogenesis, effects of ionizing radiation on cell cycle and genomic instability, induction of DNA damage by ionizing radiation and its repair, epigenetic cancer models, bystander effects of radiation, multiple pathway models of human colon cancer, and stochastic models of metastasis. The book also provides some important applications of cancer models to the assessment of cancer risk associated with various hazardous environmental agents, to cancer screening by MRI, and to drug resistance in cancer chemotherapy. An updated statistical design and analysis of xenograft experiments as well as a statistical analysis of cancer occult clinical data are also provided.The book will serve as a useful source of reference for researchers in biomathematics, biostatistics and bioinformatics; for clinical investigators and medical doctors employing quantitative methods to develop procedures for cancer diagnosis, prevention, control and treatment; and for graduate students.
Mathematical Models in Cell Biology and Cancer Chemotherapy
Author: M. Eisen
Publisher: Springer Science & Business Media
ISBN: 364293126X
Category : Mathematics
Languages : en
Pages : 444
Book Description
The purpose of this book is to show how mathematics can be applied to improve cancer chemotherapy. Unfortunately, most drugs used in treating cancer kill both normal and abnormal cells. However, more cancer cells than normal cells can be destroyed by the drug because tumor cells usually exhibit different growth kinetics than normal cells. To capitalize on this last fact, cell kinetics must be studied by formulating mathematical models of normal and abnormal cell growth. These models allow the therapeutic and harmful effects of cancer drugs to be simulated quantitatively. The combined cell and drug models can be used to study the effects of different methods of administering drugs. The least harmful method of drug administration, according to a given criterion, can be found by applying optimal control theory. The prerequisites for reading this book are an elementary knowledge of ordinary differential equations, probability, statistics, and linear algebra. In order to make this book self-contained, a chapter on cell biology and a chapter on control theory have been included. Those readers who have had some exposure to biology may prefer to omit Chapter I (Cell Biology) and only use it as a reference when required. However, few biologists have been exposed to control theory. Chapter 7 provides a short, coherent and comprehensible presentation of this subject. The concepts of control theory are necessary for a full understanding of Chapters 8 and 9.
Publisher: Springer Science & Business Media
ISBN: 364293126X
Category : Mathematics
Languages : en
Pages : 444
Book Description
The purpose of this book is to show how mathematics can be applied to improve cancer chemotherapy. Unfortunately, most drugs used in treating cancer kill both normal and abnormal cells. However, more cancer cells than normal cells can be destroyed by the drug because tumor cells usually exhibit different growth kinetics than normal cells. To capitalize on this last fact, cell kinetics must be studied by formulating mathematical models of normal and abnormal cell growth. These models allow the therapeutic and harmful effects of cancer drugs to be simulated quantitatively. The combined cell and drug models can be used to study the effects of different methods of administering drugs. The least harmful method of drug administration, according to a given criterion, can be found by applying optimal control theory. The prerequisites for reading this book are an elementary knowledge of ordinary differential equations, probability, statistics, and linear algebra. In order to make this book self-contained, a chapter on cell biology and a chapter on control theory have been included. Those readers who have had some exposure to biology may prefer to omit Chapter I (Cell Biology) and only use it as a reference when required. However, few biologists have been exposed to control theory. Chapter 7 provides a short, coherent and comprehensible presentation of this subject. The concepts of control theory are necessary for a full understanding of Chapters 8 and 9.
Introduction to Mathematical Oncology
Author: Yang Kuang
Publisher: CRC Press
ISBN: 1584889918
Category : Mathematics
Languages : en
Pages : 469
Book Description
Introduction to Mathematical Oncology presents biologically well-motivated and mathematically tractable models that facilitate both a deep understanding of cancer biology and better cancer treatment designs. It covers the medical and biological background of the diseases, modeling issues, and existing methods and their limitations. The authors introduce mathematical and programming tools, along with analytical and numerical studies of the models. They also develop new mathematical tools and look to future improvements on dynamical models. After introducing the general theory of medicine and exploring how mathematics can be essential in its understanding, the text describes well-known, practical, and insightful mathematical models of avascular tumor growth and mathematically tractable treatment models based on ordinary differential equations. It continues the topic of avascular tumor growth in the context of partial differential equation models by incorporating the spatial structure and physiological structure, such as cell size. The book then focuses on the recent active multi-scale modeling efforts on prostate cancer growth and treatment dynamics. It also examines more mechanistically formulated models, including cell quota-based population growth models, with applications to real tumors and validation using clinical data. The remainder of the text presents abundant additional historical, biological, and medical background materials for advanced and specific treatment modeling efforts. Extensively classroom-tested in undergraduate and graduate courses, this self-contained book allows instructors to emphasize specific topics relevant to clinical cancer biology and treatment. It can be used in a variety of ways, including a single-semester undergraduate course, a more ambitious graduate course, or a full-year sequence on mathematical oncology.
Publisher: CRC Press
ISBN: 1584889918
Category : Mathematics
Languages : en
Pages : 469
Book Description
Introduction to Mathematical Oncology presents biologically well-motivated and mathematically tractable models that facilitate both a deep understanding of cancer biology and better cancer treatment designs. It covers the medical and biological background of the diseases, modeling issues, and existing methods and their limitations. The authors introduce mathematical and programming tools, along with analytical and numerical studies of the models. They also develop new mathematical tools and look to future improvements on dynamical models. After introducing the general theory of medicine and exploring how mathematics can be essential in its understanding, the text describes well-known, practical, and insightful mathematical models of avascular tumor growth and mathematically tractable treatment models based on ordinary differential equations. It continues the topic of avascular tumor growth in the context of partial differential equation models by incorporating the spatial structure and physiological structure, such as cell size. The book then focuses on the recent active multi-scale modeling efforts on prostate cancer growth and treatment dynamics. It also examines more mechanistically formulated models, including cell quota-based population growth models, with applications to real tumors and validation using clinical data. The remainder of the text presents abundant additional historical, biological, and medical background materials for advanced and specific treatment modeling efforts. Extensively classroom-tested in undergraduate and graduate courses, this self-contained book allows instructors to emphasize specific topics relevant to clinical cancer biology and treatment. It can be used in a variety of ways, including a single-semester undergraduate course, a more ambitious graduate course, or a full-year sequence on mathematical oncology.
Mathematical Models in Cancer Research,
Author: T. E. Wheldon
Publisher: CRC Press
ISBN:
Category : Art
Languages : en
Pages : 272
Book Description
Cancer research deals with all aspects of malignant transformation, tumour growth and the effects of treatment. Mathematical models enable quantitative representations of the changes affecting cell state and cell number. This book provides a review of the scope of mathematical modelling in cancer research, bringing together for the first time a group of related mathematical topics including multistage carcinogenesis, tumour growth kinetics, growth control, radiotherapy, chemotherapy and biological targeting in cancer treatment. Physicists and mathematicians interested in medical research, biomathematicians, biostatisticians, radiation and medical oncologists and experimental and theoretical biologists will welcome this critical review of mathematical modelling in cancer research. This book will also be of interest to clinicians, basic cancer scientists and physicists working in radiotherapy departments, and to postgraduate students on courses in oncology and subjects.
Publisher: CRC Press
ISBN:
Category : Art
Languages : en
Pages : 272
Book Description
Cancer research deals with all aspects of malignant transformation, tumour growth and the effects of treatment. Mathematical models enable quantitative representations of the changes affecting cell state and cell number. This book provides a review of the scope of mathematical modelling in cancer research, bringing together for the first time a group of related mathematical topics including multistage carcinogenesis, tumour growth kinetics, growth control, radiotherapy, chemotherapy and biological targeting in cancer treatment. Physicists and mathematicians interested in medical research, biomathematicians, biostatisticians, radiation and medical oncologists and experimental and theoretical biologists will welcome this critical review of mathematical modelling in cancer research. This book will also be of interest to clinicians, basic cancer scientists and physicists working in radiotherapy departments, and to postgraduate students on courses in oncology and subjects.
Optimal Control for Mathematical Models of Cancer Therapies
Author: Heinz Schättler
Publisher: Springer
ISBN: 1493929720
Category : Mathematics
Languages : en
Pages : 511
Book Description
This book presents applications of geometric optimal control to real life biomedical problems with an emphasis on cancer treatments. A number of mathematical models for both classical and novel cancer treatments are presented as optimal control problems with the goal of constructing optimal protocols. The power of geometric methods is illustrated with fully worked out complete global solutions to these mathematically challenging problems. Elaborate constructions of optimal controls and corresponding system responses provide great examples of applications of the tools of geometric optimal control and the outcomes aid the design of simpler, practically realizable suboptimal protocols. The book blends mathematical rigor with practically important topics in an easily readable tutorial style. Graduate students and researchers in science and engineering, particularly biomathematics and more mathematical aspects of biomedical engineering, would find this book particularly useful.
Publisher: Springer
ISBN: 1493929720
Category : Mathematics
Languages : en
Pages : 511
Book Description
This book presents applications of geometric optimal control to real life biomedical problems with an emphasis on cancer treatments. A number of mathematical models for both classical and novel cancer treatments are presented as optimal control problems with the goal of constructing optimal protocols. The power of geometric methods is illustrated with fully worked out complete global solutions to these mathematically challenging problems. Elaborate constructions of optimal controls and corresponding system responses provide great examples of applications of the tools of geometric optimal control and the outcomes aid the design of simpler, practically realizable suboptimal protocols. The book blends mathematical rigor with practically important topics in an easily readable tutorial style. Graduate students and researchers in science and engineering, particularly biomathematics and more mathematical aspects of biomedical engineering, would find this book particularly useful.
Dynamics Of Cancer: Mathematical Foundations Of Oncology
Author: Dominik Wodarz
Publisher: World Scientific
ISBN: 9814566381
Category : Mathematics
Languages : en
Pages : 533
Book Description
The book aims to provide an introduction to mathematical models that describe the dynamics of tumor growth and the evolution of tumor cells. It can be used as a textbook for advanced undergraduate or graduate courses, and also serves as a reference book for researchers. The book has a strong evolutionary component and reflects the viewpoint that cancer can be understood rationally through a combination of mathematical and biological tools. It can be used both by mathematicians and biologists. Mathematically, the book starts with relatively simple ordinary differential equation models, and subsequently explores more complex stochastic and spatial models. Biologically, the book starts with explorations of the basic dynamics of tumor growth, including competitive interactions among cells, and subsequently moves on to the evolutionary dynamics of cancer cells, including scenarios of cancer initiation, progression, and treatment. The book finishes with a discussion of advanced topics, which describe how some of the mathematical concepts can be used to gain insights into a variety of questions, such as epigenetics, telomeres, gene therapy, and social interactions of cancer cells.
Publisher: World Scientific
ISBN: 9814566381
Category : Mathematics
Languages : en
Pages : 533
Book Description
The book aims to provide an introduction to mathematical models that describe the dynamics of tumor growth and the evolution of tumor cells. It can be used as a textbook for advanced undergraduate or graduate courses, and also serves as a reference book for researchers. The book has a strong evolutionary component and reflects the viewpoint that cancer can be understood rationally through a combination of mathematical and biological tools. It can be used both by mathematicians and biologists. Mathematically, the book starts with relatively simple ordinary differential equation models, and subsequently explores more complex stochastic and spatial models. Biologically, the book starts with explorations of the basic dynamics of tumor growth, including competitive interactions among cells, and subsequently moves on to the evolutionary dynamics of cancer cells, including scenarios of cancer initiation, progression, and treatment. The book finishes with a discussion of advanced topics, which describe how some of the mathematical concepts can be used to gain insights into a variety of questions, such as epigenetics, telomeres, gene therapy, and social interactions of cancer cells.
Medical Oncology
Author: Paul Calabresi
Publisher: McGraw-Hill Companies
ISBN:
Category : Medical
Languages : en
Pages : 1402
Book Description
The first edition pioneered new territory in the literature as the only definitive text-reference devoted to cancer management by the internist or primary care physician. Now as more & more cancer patients are being managed by this group, the second edition of Medical Oncology: Basic Principles & Clinical Management comes at the ideal time. The book is completely revised with new material on: Cancer & Pregnancy, AIDS, integration of molecular biology of cancer & new biologic response modifiers, plus timely coverage of how to effectively manage the cancer patient in the office setting; expanded coverage of nursing in cancer & completely revamped section on supportive care.
Publisher: McGraw-Hill Companies
ISBN:
Category : Medical
Languages : en
Pages : 1402
Book Description
The first edition pioneered new territory in the literature as the only definitive text-reference devoted to cancer management by the internist or primary care physician. Now as more & more cancer patients are being managed by this group, the second edition of Medical Oncology: Basic Principles & Clinical Management comes at the ideal time. The book is completely revised with new material on: Cancer & Pregnancy, AIDS, integration of molecular biology of cancer & new biologic response modifiers, plus timely coverage of how to effectively manage the cancer patient in the office setting; expanded coverage of nursing in cancer & completely revamped section on supportive care.
Mathematical Oncology 2013
Author: Alberto d'Onofrio
Publisher: Springer
ISBN: 1493904582
Category : Mathematics
Languages : en
Pages : 336
Book Description
With chapters on free boundaries, constitutive equations, stochastic dynamics, nonlinear diffusion–consumption, structured populations, and applications of optimal control theory, this volume presents the most significant recent results in the field of mathematical oncology. It highlights the work of world-class research teams, and explores how different researchers approach the same problem in various ways. Tumors are complex entities that present numerous challenges to the mathematical modeler. First and foremost, they grow. Thus their spatial mean field description involves a free boundary problem. Second, their interiors should be modeled as nontrivial porous media using constitutive equations. Third, at the end of anti-cancer therapy, a small number of malignant cells remain, making the post-treatment dynamics inherently stochastic. Fourth, the growth parameters of macroscopic tumors are non-constant, as are the parameters of anti-tumor therapies. Changes in these parameters may induce phenomena that are mathematically equivalent to phase transitions. Fifth, tumor vascular growth is random and self-similar. Finally, the drugs used in chemotherapy diffuse and are taken up by the cells in nonlinear ways. Mathematical Oncology 2013 will appeal to graduate students and researchers in biomathematics, computational and theoretical biology, biophysics, and bioengineering.
Publisher: Springer
ISBN: 1493904582
Category : Mathematics
Languages : en
Pages : 336
Book Description
With chapters on free boundaries, constitutive equations, stochastic dynamics, nonlinear diffusion–consumption, structured populations, and applications of optimal control theory, this volume presents the most significant recent results in the field of mathematical oncology. It highlights the work of world-class research teams, and explores how different researchers approach the same problem in various ways. Tumors are complex entities that present numerous challenges to the mathematical modeler. First and foremost, they grow. Thus their spatial mean field description involves a free boundary problem. Second, their interiors should be modeled as nontrivial porous media using constitutive equations. Third, at the end of anti-cancer therapy, a small number of malignant cells remain, making the post-treatment dynamics inherently stochastic. Fourth, the growth parameters of macroscopic tumors are non-constant, as are the parameters of anti-tumor therapies. Changes in these parameters may induce phenomena that are mathematically equivalent to phase transitions. Fifth, tumor vascular growth is random and self-similar. Finally, the drugs used in chemotherapy diffuse and are taken up by the cells in nonlinear ways. Mathematical Oncology 2013 will appeal to graduate students and researchers in biomathematics, computational and theoretical biology, biophysics, and bioengineering.