Mathematical Modelling and Analysis of Calcium Oscillations in Excitable and Non-excitable Cell Lines PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Mathematical Modelling and Analysis of Calcium Oscillations in Excitable and Non-excitable Cell Lines PDF full book. Access full book title Mathematical Modelling and Analysis of Calcium Oscillations in Excitable and Non-excitable Cell Lines by Bharati Krishna Hegde. Download full books in PDF and EPUB format.

Mathematical Modelling and Analysis of Calcium Oscillations in Excitable and Non-excitable Cell Lines

Mathematical Modelling and Analysis of Calcium Oscillations in Excitable and Non-excitable Cell Lines PDF Author: Bharati Krishna Hegde
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Information is transmitted from the cell surface to various specific targets in the cell via several cellular signaling pathways. Cytosolic free calcium (Ca2+)is one of the most versatile and ubiquitous intracellular messengers since it is able to regulate diverse number of functions such as proliferation, secretion, fertilization, metabolism, learning and memory. In the last couple of years, evidence has been accumulating that Ca2+ ion is able to integrate information from multiple signaling pathways and convert this information into a code which regulates events ranging from contraction to modification of gene expression (Berridge et al. 1998). It was shown that Ca2+ concentration displays oscillatory behavior in response to agonist stimulation in avariety of cells (Goldbeter 1996) and the frequency of these oscillations increases with the concentration of agonist, a behavior called frequency encoding which has led to the concept that many Ca2+-regulated processes are controlled by these codes (Berridge 1998). Although the presence of Ca2+ oscillations and the sources of Ca2+ pools involved is known in many cell types, it is yet not known how the various frequencies of Ca2+ oscillations are converted into codes that regulate the numerous cellular events. Recently a number of cellular targets that decode Ca2+ signals and are tuned to the frequency of Ca2+ oscillations have been identified. Prominent among them arecalcium-calmodulin kinase II (CAM II) and protein kinase C (PKC). The objective of this work is to study and mathematically model the oxytocinand vasopressin-induced Ca2+ oscillations in cells of normal rat liver (Clone 9) and cells of pregnant human myometrium. The proposed model accounts for the receptor-controlled Ca2+ oscillations involving positive feedback leading to activation of phospholipaseC (PLC) and negative feedback from PKC onto G-proteins which simulates many of the features of observed intracellular Ca2+. The model also incorporates the concept that coordinated Ca2+ signals in a group of hepatocytes require bothe(r)ective gap junctions and the presence of agonist at each cell surface. Another objective of this research is to understand the relevance of frequency-encoded signals by performing an analysis of frequencies of Ca2+ oscillations using the Fast Fourier Transform and the Wavelet Transform. The validity of the model was confirmed by using statistical tests to check if the frequencies and amplitudes of the experimental Ca2+ oscillations match with those of the modelled oscillations.

Mathematical Modelling and Analysis of Calcium Oscillations in Excitable and Non-excitable Cell Lines

Mathematical Modelling and Analysis of Calcium Oscillations in Excitable and Non-excitable Cell Lines PDF Author: Bharati Krishna Hegde
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Information is transmitted from the cell surface to various specific targets in the cell via several cellular signaling pathways. Cytosolic free calcium (Ca2+)is one of the most versatile and ubiquitous intracellular messengers since it is able to regulate diverse number of functions such as proliferation, secretion, fertilization, metabolism, learning and memory. In the last couple of years, evidence has been accumulating that Ca2+ ion is able to integrate information from multiple signaling pathways and convert this information into a code which regulates events ranging from contraction to modification of gene expression (Berridge et al. 1998). It was shown that Ca2+ concentration displays oscillatory behavior in response to agonist stimulation in avariety of cells (Goldbeter 1996) and the frequency of these oscillations increases with the concentration of agonist, a behavior called frequency encoding which has led to the concept that many Ca2+-regulated processes are controlled by these codes (Berridge 1998). Although the presence of Ca2+ oscillations and the sources of Ca2+ pools involved is known in many cell types, it is yet not known how the various frequencies of Ca2+ oscillations are converted into codes that regulate the numerous cellular events. Recently a number of cellular targets that decode Ca2+ signals and are tuned to the frequency of Ca2+ oscillations have been identified. Prominent among them arecalcium-calmodulin kinase II (CAM II) and protein kinase C (PKC). The objective of this work is to study and mathematically model the oxytocinand vasopressin-induced Ca2+ oscillations in cells of normal rat liver (Clone 9) and cells of pregnant human myometrium. The proposed model accounts for the receptor-controlled Ca2+ oscillations involving positive feedback leading to activation of phospholipaseC (PLC) and negative feedback from PKC onto G-proteins which simulates many of the features of observed intracellular Ca2+. The model also incorporates the concept that coordinated Ca2+ signals in a group of hepatocytes require bothe(r)ective gap junctions and the presence of agonist at each cell surface. Another objective of this research is to understand the relevance of frequency-encoded signals by performing an analysis of frequencies of Ca2+ oscillations using the Fast Fourier Transform and the Wavelet Transform. The validity of the model was confirmed by using statistical tests to check if the frequencies and amplitudes of the experimental Ca2+ oscillations match with those of the modelled oscillations.

Waves in Mathematical Models of Intracellular Calcium and Other Excitable Systems

Waves in Mathematical Models of Intracellular Calcium and Other Excitable Systems PDF Author: Wenjun Zhang
Publisher:
ISBN:
Category : Wave functions
Languages : en
Pages : 121

Book Description
Oscillations in cytoplasmic calcium concentration are a crucial control mechanism in almost every cell type. Two important classes of oscillation are of particular interest: solitary and periodic waves. Both types of waves are commonly observed in physical experiments and found in mathematical models of calcium dynamics and other excitable systems. In this thesis, we try to understand these two classes of wave solutions. We first investigate wave solutions of the canonical excitable model, the FitzHugh-Nagumo (FHN) equations. We analyze the FHN equations using geometric singular perturbation theory and numerical integration, and find some new codimension-two organizing centres of the overall dynamics. Many analytical results about the FHN model in its classical form have already been established. We devise a transformation to change the form of the FHN equations we study into the classical form to make use of the results. This enables us to show how basic features of the bifurcation structure of the FHN equations arise from the singular limit. We then study waves of a representative calcium model. We analyze the dynamics of the calcium model in the singular limit, and show how homoclinic and Hopf bifurcations of the full system arise as perturbations of singular homoclinic and Hopf bifurcations. We compare the wave solutions in the FHN model and the calcium model, and show that the dynamics of the two models differ in some respects (most importantly, in the way in which diffusion enters the equations). We conclude that the FHN model should not uniformly be used as a prototypical model for calcium dynamics. Motivated by phenomena seen in the FHN and calcium models, we then investigate reduction techniques for excitable systems, including the quasi-steady state approximation and geometric singular perturbation theory, and show that criticality of Hopf bifurcations may be changed when applying these reduction methods to slow-fast biophysical systems. This suggests that great care should be taken when using reduction techniques such as these, to ensure that spurious conclusions about the dynamics of a model are not drawn from the dynamics of a reduced version of the model. Finally, we describe the class of numerical algorithms used to compute features of the detailed bifurcation sets for the FHN and calcium models, and show how these were used to locate a non-structurally stable heteroclinic connection between periodic orbits in a calcium model; this is the first time such a global bifurcation has been computed.

Cellular Biophysics and Modeling

Cellular Biophysics and Modeling PDF Author: Greg Conradi Smith
Publisher: Cambridge University Press
ISBN: 1107005361
Category : Mathematics
Languages : en
Pages : 395

Book Description
What every neuroscientist should know about the mathematical modeling of excitable cells, presented at an introductory level.

Mathematical Analysis of Complex Cellular Activity

Mathematical Analysis of Complex Cellular Activity PDF Author: Richard Bertram
Publisher: Springer
ISBN: 3319181149
Category : Mathematics
Languages : en
Pages : 120

Book Description
This book contains two review articles on mathematical physiology that deal with closely related topics but were written and can be read independently. The first article reviews the basic theory of calcium oscillations (common to almost all cell types), including spatio-temporal behaviors such as waves. The second article uses, and expands on, much of this basic theory to show how the interaction of cytosolic calcium oscillators with membrane ion channels can result in highly complex patterns of electrical spiking. Through these examples one can see clearly how multiple oscillatory processes interact within a cell, and how mathematical methods can be used to understand such interactions better. The two reviews provide excellent examples of how mathematics and physiology can learn from each other, and work jointly towards a better understanding of complex cellular processes. Review 1: Richard Bertram, Joel Tabak, Wondimu Teka, Theodore Vo, Martin Wechselberger: Geometric Singular Perturbation Analysis of Bursting Oscillations in Pituitary Cells Review 2: Vivien Kirk, James Sneyd: Nonlinear Dynamics of Calcium

Master's Theses Directories

Master's Theses Directories PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 356

Book Description
"Education, arts and social sciences, natural and technical sciences in the United States and Canada".

Truth Revealed

Truth Revealed PDF Author: United States. Congress. House. Committee on Government Reform. Subcommittee on Human Rights and Wellness
Publisher:
ISBN:
Category : Family & Relationships
Languages : en
Pages : 338

Book Description


Differential Equations Models in Biology, Epidemiology and Ecology

Differential Equations Models in Biology, Epidemiology and Ecology PDF Author: Stavros Busenberg
Publisher: Springer Science & Business Media
ISBN: 3642456928
Category : Mathematics
Languages : en
Pages : 276

Book Description
The past forty years have been the stage for the maturation of mathematical biolo~ as a scientific field. The foundations laid by the pioneers of the field during the first half of this century have been combined with advances in ap plied mathematics and the computational sciences to create a vibrant area of scientific research with established research journals, professional societies, deep subspecialty areas, and graduate education programs. Mathematical biology is by its very nature cross-disciplinary, and research papers appear in mathemat ics, biology and other scientific journals, as well as in the specialty journals devoted to mathematical and theoretical biology. Multiple author papers are common, and so are collaborations between individuals who have academic bases in different traditional departments. Those who seek to keep abreast of current trends and problems need to interact with research workers from a much broader spectrum of fields than is common in the traditional mono-culture disciplines. Consequently, it is beneficial to have occasions which bring together significant numbers of workers in this field in a forum that encourages the exchange of ideas and which leads to a timely publication of the work that is presented. Such an occasion occurred during January 13 to 16, 1990 when almost two hun dred research workers participated in an international conference on Differential Equations and Applications to Biology and Population Dynamics which was held in Claremont.

Models of Calcium Signalling

Models of Calcium Signalling PDF Author: Geneviève Dupont
Publisher: Springer
ISBN: 3319296477
Category : Mathematics
Languages : en
Pages : 453

Book Description
This book discusses the ways in which mathematical, computational, and modelling methods can be used to help understand the dynamics of intracellular calcium. The concentration of free intracellular calcium is vital for controlling a wide range of cellular processes, and is thus of great physiological importance. However, because of the complex ways in which the calcium concentration varies, it is also of great mathematical interest.This book presents the general modelling theory as well as a large number of specific case examples, to show how mathematical modelling can interact with experimental approaches, in an interdisciplinary and multifaceted approach to the study of an important physiological control mechanism. Geneviève Dupont is FNRS Research Director at the Unit of Theoretical Chronobiology of the Université Libre de Bruxelles; Martin Falcke is head of the Mathematical Cell Physiology group at the Max Delbrück Center for Molecular Medicine, Berlin; Vivien Kirk is an Associate Professor in the Department of Mathematics at the University of Auckland, New Zealand; James Sneyd is a Professor in the Department of Mathematics at The University of Auckland, New Zealand.

Electrophysiology Measurements for Studying Neural Interfaces

Electrophysiology Measurements for Studying Neural Interfaces PDF Author: Mohammad M. Aria
Publisher: Academic Press
ISBN: 0128170719
Category : Medical
Languages : en
Pages : 180

Book Description
Electrophysiology Measurements for Studying Neural Interfaces helps readers to choose a proper cell line and set-up for studying different bio-electronic interfaces before delving into the electrophysiology techniques available. Therefore, this book details the materials and devices needed for different types of neural stimulation such as photoelectrical and photothermal stimulations. Also, modern techniques like optical electrophysiology and calcium imaging in this book provides readers with more available approaches to monitor neural activities in addition to whole-cell patch-clamp technology. Details steps of an electrophysiology project from start to finish for graduate students employing the technique in their research Includes sample electrophysiological studies with multiple cell lines (PC12, N2a, NG108, SHSY, and embryonic stem cell lines) to facilitate research Features data analysis of electrophysiology results from various relevant experiments and cell culture tips

Cumulated Index Medicus

Cumulated Index Medicus PDF Author:
Publisher:
ISBN:
Category : Medicine
Languages : en
Pages : 928

Book Description