Author: Astrid Hilbert
Publisher: Springer Nature
ISBN: 3031140311
Category : Mathematics
Languages : en
Pages : 390
Book Description
Sergio Albeverio gave important contributions to many fields ranging from Physics to Mathematics, while creating new research areas from their interplay. Some of them are presented in this Volume that grew out of the Random Transformations and Invariance in Stochastic Dynamics Workshop held in Verona in 2019. To understand the theory of thermo- and fluid-dynamics, statistical mechanics, quantum mechanics and quantum field theory, Albeverio and his collaborators developed stochastic theories having strong interplays with operator theory and functional analysis. His contribution to the theory of (non Gaussian)-SPDEs, the related theory of (pseudo-)differential operators, and ergodic theory had several impacts to solve problems related, among other topics, to thermo- and fluid dynamics. His scientific works in the theory of interacting particles and its extension to configuration spaces lead, e.g., to the solution of open problems in statistical mechanics and quantum field theory. Together with Raphael Hoegh Krohn he introduced the theory of infinite dimensional Dirichlet forms, which nowadays is used in many different contexts, and new methods in the theory of Feynman path integration. He did not fear to further develop different methods in Mathematics, like, e.g., the theory of non-standard analysis and p-adic numbers.
Quantum and Stochastic Mathematical Physics
Author: Astrid Hilbert
Publisher: Springer Nature
ISBN: 3031140311
Category : Mathematics
Languages : en
Pages : 390
Book Description
Sergio Albeverio gave important contributions to many fields ranging from Physics to Mathematics, while creating new research areas from their interplay. Some of them are presented in this Volume that grew out of the Random Transformations and Invariance in Stochastic Dynamics Workshop held in Verona in 2019. To understand the theory of thermo- and fluid-dynamics, statistical mechanics, quantum mechanics and quantum field theory, Albeverio and his collaborators developed stochastic theories having strong interplays with operator theory and functional analysis. His contribution to the theory of (non Gaussian)-SPDEs, the related theory of (pseudo-)differential operators, and ergodic theory had several impacts to solve problems related, among other topics, to thermo- and fluid dynamics. His scientific works in the theory of interacting particles and its extension to configuration spaces lead, e.g., to the solution of open problems in statistical mechanics and quantum field theory. Together with Raphael Hoegh Krohn he introduced the theory of infinite dimensional Dirichlet forms, which nowadays is used in many different contexts, and new methods in the theory of Feynman path integration. He did not fear to further develop different methods in Mathematics, like, e.g., the theory of non-standard analysis and p-adic numbers.
Publisher: Springer Nature
ISBN: 3031140311
Category : Mathematics
Languages : en
Pages : 390
Book Description
Sergio Albeverio gave important contributions to many fields ranging from Physics to Mathematics, while creating new research areas from their interplay. Some of them are presented in this Volume that grew out of the Random Transformations and Invariance in Stochastic Dynamics Workshop held in Verona in 2019. To understand the theory of thermo- and fluid-dynamics, statistical mechanics, quantum mechanics and quantum field theory, Albeverio and his collaborators developed stochastic theories having strong interplays with operator theory and functional analysis. His contribution to the theory of (non Gaussian)-SPDEs, the related theory of (pseudo-)differential operators, and ergodic theory had several impacts to solve problems related, among other topics, to thermo- and fluid dynamics. His scientific works in the theory of interacting particles and its extension to configuration spaces lead, e.g., to the solution of open problems in statistical mechanics and quantum field theory. Together with Raphael Hoegh Krohn he introduced the theory of infinite dimensional Dirichlet forms, which nowadays is used in many different contexts, and new methods in the theory of Feynman path integration. He did not fear to further develop different methods in Mathematics, like, e.g., the theory of non-standard analysis and p-adic numbers.
Stochastic Processes - Mathematics and Physics II
Author: Sergio Albeverio
Publisher: Springer
ISBN: 3540478353
Category : Mathematics
Languages : en
Pages : 366
Book Description
This second BiBoS volume surveys recent developments in the theory of stochastic processes. Particular attention is given to the interaction between mathematics and physics. Main topics include: statistical mechanics, stochastic mechanics, differential geometry, stochastic proesses, quantummechanics, quantum field theory, probability measures, central limit theorems, stochastic differential equations, Dirichlet forms.
Publisher: Springer
ISBN: 3540478353
Category : Mathematics
Languages : en
Pages : 366
Book Description
This second BiBoS volume surveys recent developments in the theory of stochastic processes. Particular attention is given to the interaction between mathematics and physics. Main topics include: statistical mechanics, stochastic mechanics, differential geometry, stochastic proesses, quantummechanics, quantum field theory, probability measures, central limit theorems, stochastic differential equations, Dirichlet forms.
Discontinuous Groups of Isometries in the Hyperbolic Plane
Author: Werner Fenchel
Publisher: Walter de Gruyter
ISBN: 3110891352
Category : Mathematics
Languages : en
Pages : 389
Book Description
This is an introductory textbook on isometry groups of the hyperbolic plane. Interest in such groups dates back more than 120 years. Examples appear in number theory (modular groups and triangle groups), the theory of elliptic functions, and the theory of linear differential equations in the complex domain (giving rise to the alternative name Fuchsian groups). The current book is based on what became known as the famous Fenchel-Nielsen manuscript. Jakob Nielsen (1890-1959) started this project well before World War II, and his interest arose through his deep investigations on the topology of Riemann surfaces and from the fact that the fundamental group of a surface of genus greater than one is represented by such a discontinuous group. Werner Fenchel (1905-1988) joined the project later and overtook much of the preparation of the manuscript. The present book is special because of its very complete treatment of groups containing reversions and because it avoids the use of matrices to represent Moebius maps. This text is intended for students and researchers in the many areas of mathematics that involve the use of discontinuous groups.
Publisher: Walter de Gruyter
ISBN: 3110891352
Category : Mathematics
Languages : en
Pages : 389
Book Description
This is an introductory textbook on isometry groups of the hyperbolic plane. Interest in such groups dates back more than 120 years. Examples appear in number theory (modular groups and triangle groups), the theory of elliptic functions, and the theory of linear differential equations in the complex domain (giving rise to the alternative name Fuchsian groups). The current book is based on what became known as the famous Fenchel-Nielsen manuscript. Jakob Nielsen (1890-1959) started this project well before World War II, and his interest arose through his deep investigations on the topology of Riemann surfaces and from the fact that the fundamental group of a surface of genus greater than one is represented by such a discontinuous group. Werner Fenchel (1905-1988) joined the project later and overtook much of the preparation of the manuscript. The present book is special because of its very complete treatment of groups containing reversions and because it avoids the use of matrices to represent Moebius maps. This text is intended for students and researchers in the many areas of mathematics that involve the use of discontinuous groups.
Fractal Geometry and Stochastics IV
Author: Christoph Bandt
Publisher: Springer Science & Business Media
ISBN: 3034600305
Category : Mathematics
Languages : en
Pages : 292
Book Description
Over the last fifteen years fractal geometry has established itself as a substantial mathematical theory in its own right. The interplay between fractal geometry, analysis and stochastics has highly influenced recent developments in mathematical modeling of complicated structures. This process has been forced by problems in these areas related to applications in statistical physics, biomathematics and finance. This book is a collection of survey articles covering many of the most recent developments, like Schramm-Loewner evolution, fractal scaling limits, exceptional sets for percolation, and heat kernels on fractals. The authors were the keynote speakers at the conference "Fractal Geometry and Stochastics IV" at Greifswald in September 2008.
Publisher: Springer Science & Business Media
ISBN: 3034600305
Category : Mathematics
Languages : en
Pages : 292
Book Description
Over the last fifteen years fractal geometry has established itself as a substantial mathematical theory in its own right. The interplay between fractal geometry, analysis and stochastics has highly influenced recent developments in mathematical modeling of complicated structures. This process has been forced by problems in these areas related to applications in statistical physics, biomathematics and finance. This book is a collection of survey articles covering many of the most recent developments, like Schramm-Loewner evolution, fractal scaling limits, exceptional sets for percolation, and heat kernels on fractals. The authors were the keynote speakers at the conference "Fractal Geometry and Stochastics IV" at Greifswald in September 2008.
Brownian Motion
Author: René L. Schilling
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311037398X
Category : Mathematics
Languages : en
Pages : 514
Book Description
Brownian motion is one of the most important stochastic processes in continuous time and with continuous state space. Within the realm of stochastic processes, Brownian motion is at the intersection of Gaussian processes, martingales, Markov processes, diffusions and random fractals, and it has influenced the study of these topics. Its central position within mathematics is matched by numerous applications in science, engineering and mathematical finance. Often textbooks on probability theory cover, if at all, Brownian motion only briefly. On the other hand, there is a considerable gap to more specialized texts on Brownian motion which is not so easy to overcome for the novice. The authors’ aim was to write a book which can be used as an introduction to Brownian motion and stochastic calculus, and as a first course in continuous-time and continuous-state Markov processes. They also wanted to have a text which would be both a readily accessible mathematical back-up for contemporary applications (such as mathematical finance) and a foundation to get easy access to advanced monographs. This textbook, tailored to the needs of graduate and advanced undergraduate students, covers Brownian motion, starting from its elementary properties, certain distributional aspects, path properties, and leading to stochastic calculus based on Brownian motion. It also includes numerical recipes for the simulation of Brownian motion.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311037398X
Category : Mathematics
Languages : en
Pages : 514
Book Description
Brownian motion is one of the most important stochastic processes in continuous time and with continuous state space. Within the realm of stochastic processes, Brownian motion is at the intersection of Gaussian processes, martingales, Markov processes, diffusions and random fractals, and it has influenced the study of these topics. Its central position within mathematics is matched by numerous applications in science, engineering and mathematical finance. Often textbooks on probability theory cover, if at all, Brownian motion only briefly. On the other hand, there is a considerable gap to more specialized texts on Brownian motion which is not so easy to overcome for the novice. The authors’ aim was to write a book which can be used as an introduction to Brownian motion and stochastic calculus, and as a first course in continuous-time and continuous-state Markov processes. They also wanted to have a text which would be both a readily accessible mathematical back-up for contemporary applications (such as mathematical finance) and a foundation to get easy access to advanced monographs. This textbook, tailored to the needs of graduate and advanced undergraduate students, covers Brownian motion, starting from its elementary properties, certain distributional aspects, path properties, and leading to stochastic calculus based on Brownian motion. It also includes numerical recipes for the simulation of Brownian motion.
Mathematics + Physics
Author: Ludwig Streit
Publisher: World Scientific
ISBN: 9789971966638
Category : Science
Languages : en
Pages : 350
Book Description
This publication contains a collection of lectures presented by mathematicians and physicists at seminars held at the Center for Interdisciplinary Research, University of Bielefeld
Publisher: World Scientific
ISBN: 9789971966638
Category : Science
Languages : en
Pages : 350
Book Description
This publication contains a collection of lectures presented by mathematicians and physicists at seminars held at the Center for Interdisciplinary Research, University of Bielefeld
Dirichlet Forms Methods for Poisson Point Measures and Lévy Processes
Author: Nicolas Bouleau
Publisher: Springer
ISBN: 3319258206
Category : Mathematics
Languages : en
Pages : 333
Book Description
A simplified approach to Malliavin calculus adapted to Poisson random measures is developed and applied in this book. Called the “lent particle method” it is based on perturbation of the position of particles. Poisson random measures describe phenomena involving random jumps (for instance in mathematical finance) or the random distribution of particles (as in statistical physics). Thanks to the theory of Dirichlet forms, the authors develop a mathematical tool for a quite general class of random Poisson measures and significantly simplify computations of Malliavin matrices of Poisson functionals. The method gives rise to a new explicit calculus that they illustrate on various examples: it consists in adding a particle and then removing it after computing the gradient. Using this method, one can establish absolute continuity of Poisson functionals such as Lévy areas, solutions of SDEs driven by Poisson measure and, by iteration, obtain regularity of laws. The authors also give applications to error calculus theory. This book will be of interest to researchers and graduate students in the fields of stochastic analysis and finance, and in the domain of statistical physics. Professors preparing courses on these topics will also find it useful. The prerequisite is a knowledge of probability theory.
Publisher: Springer
ISBN: 3319258206
Category : Mathematics
Languages : en
Pages : 333
Book Description
A simplified approach to Malliavin calculus adapted to Poisson random measures is developed and applied in this book. Called the “lent particle method” it is based on perturbation of the position of particles. Poisson random measures describe phenomena involving random jumps (for instance in mathematical finance) or the random distribution of particles (as in statistical physics). Thanks to the theory of Dirichlet forms, the authors develop a mathematical tool for a quite general class of random Poisson measures and significantly simplify computations of Malliavin matrices of Poisson functionals. The method gives rise to a new explicit calculus that they illustrate on various examples: it consists in adding a particle and then removing it after computing the gradient. Using this method, one can establish absolute continuity of Poisson functionals such as Lévy areas, solutions of SDEs driven by Poisson measure and, by iteration, obtain regularity of laws. The authors also give applications to error calculus theory. This book will be of interest to researchers and graduate students in the fields of stochastic analysis and finance, and in the domain of statistical physics. Professors preparing courses on these topics will also find it useful. The prerequisite is a knowledge of probability theory.
Fractal Geometry and Stochastics II
Author: Christoph Bandt
Publisher: Birkhäuser
ISBN: 3034883803
Category : Mathematics
Languages : en
Pages : 286
Book Description
A collection of contributions by outstanding mathematicians, highlighting the principal directions of research on the combination of fractal geometry and stochastic methods. Clear expositions introduce the most recent results and problems on these subjects and give an overview of their historical development.
Publisher: Birkhäuser
ISBN: 3034883803
Category : Mathematics
Languages : en
Pages : 286
Book Description
A collection of contributions by outstanding mathematicians, highlighting the principal directions of research on the combination of fractal geometry and stochastic methods. Clear expositions introduce the most recent results and problems on these subjects and give an overview of their historical development.
Stochastic Analysis
Author: Michel Metivier
Publisher: Springer
ISBN: 3540392327
Category : Mathematics
Languages : en
Pages : 206
Book Description
Annotation Contents: G. Benarous: Noyau de la chaleur hypoelliptique et géométrie sous-riemannienne.- M. Fukushima: On two Classes of Smooth Measures for Symmetric Markov Processes.- T. Funaki: The Hydrodynamical Limit for Scalar Ginzburg-Landau Model on R.- N. Ikeda, S. Kusuoka: Short time Asymptotics for Fundamental Solutions of Diffusion Equations.- K. Ito: Malliavin Calculus on a Segal Space.- Y. Kasahara, M. Maejima: Weak Convergence of Functionals of Point Processes on Rd.- Y. Katznelson, P. Malliavin: Image des Points critiques d'une application régulière.- S. Kusuoka: Degree Theorem in Certain Wiener Riemannian Manifolds.- R. Leandre: Applications quantitatives et géométrique du calcul de Malliavin.- Y. Le Jan: On the Fock Space Representation of Occupations Times for non Reversible Markov Processes.- M. Metivier, M. Viot: On Weak Solutions of Stochastic Partial Differential Equations.- P.A. Meyer: Une remarque sur les Chaos de Wiener.- H. Tanaka: Limit Theorem for One-Dimensional Diffusion Process in Brownian Environment.- H. Uemura, S. Watanabe: Diffusion Processes and Heat Kernels on Certain Nilpotent Groups.
Publisher: Springer
ISBN: 3540392327
Category : Mathematics
Languages : en
Pages : 206
Book Description
Annotation Contents: G. Benarous: Noyau de la chaleur hypoelliptique et géométrie sous-riemannienne.- M. Fukushima: On two Classes of Smooth Measures for Symmetric Markov Processes.- T. Funaki: The Hydrodynamical Limit for Scalar Ginzburg-Landau Model on R.- N. Ikeda, S. Kusuoka: Short time Asymptotics for Fundamental Solutions of Diffusion Equations.- K. Ito: Malliavin Calculus on a Segal Space.- Y. Kasahara, M. Maejima: Weak Convergence of Functionals of Point Processes on Rd.- Y. Katznelson, P. Malliavin: Image des Points critiques d'une application régulière.- S. Kusuoka: Degree Theorem in Certain Wiener Riemannian Manifolds.- R. Leandre: Applications quantitatives et géométrique du calcul de Malliavin.- Y. Le Jan: On the Fock Space Representation of Occupations Times for non Reversible Markov Processes.- M. Metivier, M. Viot: On Weak Solutions of Stochastic Partial Differential Equations.- P.A. Meyer: Une remarque sur les Chaos de Wiener.- H. Tanaka: Limit Theorem for One-Dimensional Diffusion Process in Brownian Environment.- H. Uemura, S. Watanabe: Diffusion Processes and Heat Kernels on Certain Nilpotent Groups.
Geometry of Random Motion
Author: Richard Durrett
Publisher: American Mathematical Soc.
ISBN: 0821850814
Category : Mathematics
Languages : en
Pages : 352
Book Description
In July 1987, an AMS-IMS-SIAM Joint Summer Research Conference on Geometry of Random Motion was held at Cornell University. The initial impetus for the meeting came from the desire to further explore the now-classical connection between diffusion processes and second-order (hypo)elliptic differential operators. To accomplish this goal, the conference brought together leading researchers with varied backgrounds and interests: probabilists who have proved results in geometry, geometers who have used probabilistic methods, and probabilists who have studied diffusion processes. Focusing on the interplay between probability and differential geometry, this volume examines diffusion processes on various geometric structures, such as Riemannian manifolds, Lie groups, and symmetric spaces. Some of the articles specifically address analysis on manifolds, while others center on (nongeometric) stochastic analysis. The majority of the articles deal simultaneously with probabilistic and geometric techniques. Requiring a knowledge of the modern theory of diffusion processes, this book will appeal to mathematicians, mathematical physicists, and other researchers interested in Brownian motion, diffusion processes, Laplace-Beltrami operators, and the geometric applications of these concepts. The book provides a detailed view of the leading edge of research in this rapidly moving field.
Publisher: American Mathematical Soc.
ISBN: 0821850814
Category : Mathematics
Languages : en
Pages : 352
Book Description
In July 1987, an AMS-IMS-SIAM Joint Summer Research Conference on Geometry of Random Motion was held at Cornell University. The initial impetus for the meeting came from the desire to further explore the now-classical connection between diffusion processes and second-order (hypo)elliptic differential operators. To accomplish this goal, the conference brought together leading researchers with varied backgrounds and interests: probabilists who have proved results in geometry, geometers who have used probabilistic methods, and probabilists who have studied diffusion processes. Focusing on the interplay between probability and differential geometry, this volume examines diffusion processes on various geometric structures, such as Riemannian manifolds, Lie groups, and symmetric spaces. Some of the articles specifically address analysis on manifolds, while others center on (nongeometric) stochastic analysis. The majority of the articles deal simultaneously with probabilistic and geometric techniques. Requiring a knowledge of the modern theory of diffusion processes, this book will appeal to mathematicians, mathematical physicists, and other researchers interested in Brownian motion, diffusion processes, Laplace-Beltrami operators, and the geometric applications of these concepts. The book provides a detailed view of the leading edge of research in this rapidly moving field.