Martingales on Frame Bundles PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Martingales on Frame Bundles PDF full book. Access full book title Martingales on Frame Bundles by Pedro J. Catuogno. Download full books in PDF and EPUB format.

Martingales on Frame Bundles

Martingales on Frame Bundles PDF Author: Pedro J. Catuogno
Publisher:
ISBN:
Category : Frame bundles
Languages : en
Pages : 28

Book Description


Martingales on Frame Bundles

Martingales on Frame Bundles PDF Author: Pedro J. Catuogno
Publisher:
ISBN:
Category : Frame bundles
Languages : en
Pages : 28

Book Description


Diffusions, Markov Processes and Martingales: Volume 2, Itô Calculus

Diffusions, Markov Processes and Martingales: Volume 2, Itô Calculus PDF Author: L. C. G. Rogers
Publisher: Cambridge University Press
ISBN: 9780521775939
Category : Mathematics
Languages : en
Pages : 498

Book Description
This celebrated volume gives an accessible introduction to stochastic integrals, stochastic differential equations, excursion theory and the general theory of processes.

Martingales on Principal Fiber Bundles

Martingales on Principal Fiber Bundles PDF Author: Pedro J. Catuogno
Publisher:
ISBN:
Category : Fiber bundles (Mathematics)
Languages : en
Pages : 20

Book Description


Diffusions, Markov Processes, and Martingales: Volume 1, Foundations

Diffusions, Markov Processes, and Martingales: Volume 1, Foundations PDF Author: L. C. G. Rogers
Publisher: Cambridge University Press
ISBN: 9780521775946
Category : Mathematics
Languages : en
Pages : 412

Book Description
Now available in paperback, this celebrated book has been prepared with readers' needs in mind, remaining a systematic guide to a large part of the modern theory of Probability, whilst retaining its vitality. The authors' aim is to present the subject of Brownian motion not as a dry part of mathematical analysis, but to convey its real meaning and fascination. The opening, heuristic chapter does just this, and it is followed by a comprehensive and self-contained account of the foundations of theory of stochastic processes. Chapter 3 is a lively and readable account of the theory of Markov processes. Together with its companion volume, this book helps equip graduate students for research into a subject of great intrinsic interest and wide application in physics, biology, engineering, finance and computer science.

Stochastic Calculus in Manifolds

Stochastic Calculus in Manifolds PDF Author: Michel Emery
Publisher: Springer Science & Business Media
ISBN: 3642750516
Category : Mathematics
Languages : en
Pages : 158

Book Description
Addressed to both pure and applied probabilitists, including graduate students, this text is a pedagogically-oriented introduction to the Schwartz-Meyer second-order geometry and its use in stochastic calculus. P.A. Meyer has contributed an appendix: "A short presentation of stochastic calculus" presenting the basis of stochastic calculus and thus making the book better accessible to non-probabilitists also. No prior knowledge of differential geometry is assumed of the reader: this is covered within the text to the extent. The general theory is presented only towards the end of the book, after the reader has been exposed to two particular instances - martingales and Brownian motions - in manifolds. The book also includes new material on non-confluence of martingales, s.d.e. from one manifold to another, approximation results for martingales, solutions to Stratonovich differential equations. Thus this book will prove very useful to specialists and non-specialists alike, as a self-contained introductory text or as a compact reference.

Geometry and Identification

Geometry and Identification PDF Author: Peter E. Caines
Publisher:
ISBN: 9780915692330
Category : Mathematics
Languages : en
Pages : 220

Book Description


Stochastic Analysis on Manifolds

Stochastic Analysis on Manifolds PDF Author: Elton P. Hsu
Publisher: American Mathematical Soc.
ISBN: 0821808028
Category : Mathematics
Languages : en
Pages : 297

Book Description
Mainly from the perspective of a probabilist, Hsu shows how stochastic analysis and differential geometry can work together for their mutual benefit. He writes for researchers and advanced graduate students with a firm foundation in basic euclidean stochastic analysis, and differential geometry. He does not include the exercises usual to such texts, but does provide proofs throughout that invite readers to test their understanding. Annotation copyrighted by Book News Inc., Portland, OR.

The Splendors and Miseries of Martingales

The Splendors and Miseries of Martingales PDF Author: Laurent Mazliak
Publisher: Springer Nature
ISBN: 3031059883
Category : Mathematics
Languages : en
Pages : 419

Book Description
Over the past eighty years, martingales have become central in the mathematics of randomness. They appear in the general theory of stochastic processes, in the algorithmic theory of randomness, and in some branches of mathematical statistics. Yet little has been written about the history of this evolution. This book explores some of the territory that the history of the concept of martingales has transformed. The historian of martingales faces an immense task. We can find traces of martingale thinking at the very beginning of probability theory, because this theory was related to gambling, and the evolution of a gambler’s holdings as a result of following a particular strategy can always be understood as a martingale. More recently, in the second half of the twentieth century, martingales became important in the theory of stochastic processes at the very same time that stochastic processes were becoming increasingly important in probability, statistics and more generally in various applied situations. Moreover, a history of martingales, like a history of any other branch of mathematics, must go far beyond an account of mathematical ideas and techniques. It must explore the context in which the evolution of ideas took place: the broader intellectual milieux of the actors, the networks that already existed or were created by the research, even the social and political conditions that favored or hampered the circulation and adoption of certain ideas. This books presents a stroll through this history, in part a guided tour, in part a random walk. First, historical studies on the period from 1920 to 1950 are presented, when martingales emerged as a distinct mathematical concept. Then insights on the period from 1950 into the 1980s are offered, when the concept showed its value in stochastic processes, mathematical statistics, algorithmic randomness and various applications.

Séminaire de Probabilités XLV

Séminaire de Probabilités XLV PDF Author: Catherine Donati-Martin
Publisher: Springer
ISBN: 3319003216
Category : Mathematics
Languages : en
Pages : 556

Book Description
The series of advanced courses initiated in Séminaire de Probabilités XXXIII continues with a course by Ivan Nourdin on Gaussian approximations using Malliavin calculus. The Séminaire also occasionally publishes a series of contributions on a unifying subject; in this spirit, selected participants to the September 2011 Conference on Stochastic Filtrations, held in Strasbourg and organized by Michel Émery, have also contributed to the present volume. The rest of the work covers a wide range of topics, such as stochastic calculus and Markov processes, random matrices and free probability, and combinatorial optimization.

Fundamentals of Finslerian Diffusion with Applications

Fundamentals of Finslerian Diffusion with Applications PDF Author: P.L. Antonelli
Publisher: Springer Science & Business Media
ISBN: 9401148244
Category : Science
Languages : en
Pages : 208

Book Description
The erratic motion of pollen grains and other tiny particles suspended in liquid is known as Brownian motion, after its discoverer, Robert Brown, a botanist who worked in 1828, in London. He turned over the problem of why this motion occurred to physicists who were investigating kinetic theory and thermodynamics; at a time when the existence of molecules had yet to be established. In 1900, Henri Poincare lectured on this topic to the 1900 International Congress of Physicists, in Paris [Wic95]. At this time, Louis Bachelier, a thesis student of Poincare, made a monumental breakthrough with his Theory of Stock Market Fluctuations, which is still studied today, [Co064]. Norbert Wiener (1923), who was first to formulate a rigorous concept of the Brownian path, is most often cited by mathematicians as the father of the subject, while physicists will cite A. Einstein (1905) and M. Smoluchowski. Both considered Markov diffusions and realized that Brownian behaviour nd could be formulated in terms of parabolic 2 order linear p. d. e. 'so Further more, from this perspective, the covariance of changes in position could be allowed to depend on the position itself, according to the invariant form of the diffusion introduced by Kolmogorov in 1937, [KoI37]. Thus, any time homogeneous Markov diffusion could be written in terms of the Laplacian, intrinsically given by the symbol (covariance) of the p. d. e. , plus a drift vec tor. The theory was further advanced in 1949, when K.