Adaptive Markov Control Processes PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Adaptive Markov Control Processes PDF full book. Access full book title Adaptive Markov Control Processes by Onesimo Hernandez-Lerma. Download full books in PDF and EPUB format.

Adaptive Markov Control Processes

Adaptive Markov Control Processes PDF Author: Onesimo Hernandez-Lerma
Publisher: Springer Science & Business Media
ISBN: 1441987142
Category : Mathematics
Languages : en
Pages : 160

Book Description
This book is concerned with a class of discrete-time stochastic control processes known as controlled Markov processes (CMP's), also known as Markov decision processes or Markov dynamic programs. Starting in the mid-1950swith Richard Bellman, many contributions to CMP's have been made, and applications to engineering, statistics and operations research, among other areas, have also been developed. The purpose of this book is to present some recent developments on the theory of adaptive CMP's, i. e. , CMP's that depend on unknown parameters. Thus at each decision time, the controller or decision-maker must estimate the true parameter values, and then adapt the control actions to the estimated values. We do not intend to describe all aspects of stochastic adaptive control; rather, the selection of material reflects our own research interests. The prerequisite for this book is a knowledgeof real analysis and prob ability theory at the level of, say, Ash (1972) or Royden (1968), but no previous knowledge of control or decision processes is required. The pre sentation, on the other hand, is meant to beself-contained,in the sensethat whenever a result from analysisor probability is used, it is usually stated in full and references are supplied for further discussion, if necessary. Several appendices are provided for this purpose. The material is divided into six chapters. Chapter 1 contains the basic definitions about the stochastic control problems we are interested in; a brief description of some applications is also provided.

Adaptive Markov Control Processes

Adaptive Markov Control Processes PDF Author: Onesimo Hernandez-Lerma
Publisher: Springer Science & Business Media
ISBN: 1441987142
Category : Mathematics
Languages : en
Pages : 160

Book Description
This book is concerned with a class of discrete-time stochastic control processes known as controlled Markov processes (CMP's), also known as Markov decision processes or Markov dynamic programs. Starting in the mid-1950swith Richard Bellman, many contributions to CMP's have been made, and applications to engineering, statistics and operations research, among other areas, have also been developed. The purpose of this book is to present some recent developments on the theory of adaptive CMP's, i. e. , CMP's that depend on unknown parameters. Thus at each decision time, the controller or decision-maker must estimate the true parameter values, and then adapt the control actions to the estimated values. We do not intend to describe all aspects of stochastic adaptive control; rather, the selection of material reflects our own research interests. The prerequisite for this book is a knowledgeof real analysis and prob ability theory at the level of, say, Ash (1972) or Royden (1968), but no previous knowledge of control or decision processes is required. The pre sentation, on the other hand, is meant to beself-contained,in the sensethat whenever a result from analysisor probability is used, it is usually stated in full and references are supplied for further discussion, if necessary. Several appendices are provided for this purpose. The material is divided into six chapters. Chapter 1 contains the basic definitions about the stochastic control problems we are interested in; a brief description of some applications is also provided.

Stochastic Systems

Stochastic Systems PDF Author: P. R. Kumar
Publisher: SIAM
ISBN: 1611974259
Category : Mathematics
Languages : en
Pages : 371

Book Description
Since its origins in the 1940s, the subject of decision making under uncertainty has grown into a diversified area with application in several branches of engineering and in those areas of the social sciences concerned with policy analysis and prescription. These approaches required a computing capacity too expensive for the time, until the ability to collect and process huge quantities of data engendered an explosion of work in the area. This book provides succinct and rigorous treatment of the foundations of stochastic control; a unified approach to filtering, estimation, prediction, and stochastic and adaptive control; and the conceptual framework necessary to understand current trends in stochastic control, data mining, machine learning, and robotics.

Mathematical Theory of Adaptive Control

Mathematical Theory of Adaptive Control PDF Author: Vladimir G. Sragovich
Publisher: World Scientific
ISBN: 9812701036
Category : Mathematics
Languages : en
Pages : 490

Book Description
The theory of adaptive control is concerned with construction of strategies so that the controlled system behaves in a desirable way, without assuming the complete knowledge of the system. The models considered in this comprehensive book are of Markovian type. Both partial observation and partial information cases are analyzed. While the book focuses on discrete time models, continuous time ones are considered in the final chapter. The book provides a novel perspective by summarizing results on adaptive control obtained in the Soviet Union, which are not well known in the West. Comments on the interplay between the Russian and Western methods are also included.

Identification and Stochastic Adaptive Control

Identification and Stochastic Adaptive Control PDF Author: Han-fu Chen
Publisher: Springer Science & Business Media
ISBN: 1461204291
Category : Science
Languages : en
Pages : 436

Book Description
Identifying the input-output relationship of a system or discovering the evolutionary law of a signal on the basis of observation data, and applying the constructed mathematical model to predicting, controlling or extracting other useful information constitute a problem that has been drawing a lot of attention from engineering and gaining more and more importance in econo metrics, biology, environmental science and other related areas. Over the last 30-odd years, research on this problem has rapidly developed in various areas under different terms, such as time series analysis, signal processing and system identification. Since the randomness almost always exists in real systems and in observation data, and since the random process is sometimes used to model the uncertainty in systems, it is reasonable to consider the object as a stochastic system. In some applications identification can be carried out off line, but in other cases this is impossible, for example, when the structure or the parameter of the system depends on the sample, or when the system is time-varying. In these cases we have to identify the system on line and to adjust the control in accordance with the model which is supposed to be approaching the true system during the process of identification. This is why there has been an increasing interest in identification and adaptive control for stochastic systems from both theorists and practitioners.

Markov Processes and Controlled Markov Chains

Markov Processes and Controlled Markov Chains PDF Author: Zhenting Hou
Publisher: Springer Science & Business Media
ISBN: 146130265X
Category : Mathematics
Languages : en
Pages : 501

Book Description
The general theory of stochastic processes and the more specialized theory of Markov processes evolved enormously in the second half of the last century. In parallel, the theory of controlled Markov chains (or Markov decision processes) was being pioneered by control engineers and operations researchers. Researchers in Markov processes and controlled Markov chains have been, for a long time, aware of the synergies between these two subject areas. However, this may be the first volume dedicated to highlighting these synergies and, almost certainly, it is the first volume that emphasizes the contributions of the vibrant and growing Chinese school of probability. The chapters that appear in this book reflect both the maturity and the vitality of modern day Markov processes and controlled Markov chains. They also will provide an opportunity to trace the connections that have emerged between the work done by members of the Chinese school of probability and the work done by the European, US, Central and South American and Asian scholars.

Self-Learning Control of Finite Markov Chains

Self-Learning Control of Finite Markov Chains PDF Author: A S Poznyak
Publisher: CRC Press
ISBN: 9780367398996
Category :
Languages : en
Pages : 314

Book Description
Presents a number of new and potentially useful self-learning (adaptive) control algorithms and theoretical as well as practical results for both unconstrained and constrained finite Markov chains-efficiently processing new information by adjusting the control strategies directly or indirectly.

Self-Learning Control of Finite Markov Chains

Self-Learning Control of Finite Markov Chains PDF Author: A.S. Poznyak
Publisher: CRC Press
ISBN: 1482273276
Category : Technology & Engineering
Languages : en
Pages : 315

Book Description
Presents a number of new and potentially useful self-learning (adaptive) control algorithms and theoretical as well as practical results for both unconstrained and constrained finite Markov chains-efficiently processing new information by adjusting the control strategies directly or indirectly.

Optimal, Predictive, and Adaptive Control

Optimal, Predictive, and Adaptive Control PDF Author: Edoardo Mosca
Publisher: Pearson Education
ISBN:
Category : Mathematics
Languages : en
Pages : 504

Book Description
Using a common unifying framework, this volume explores the main topics of Linear Quadratic control, predictive control, and adaptive predictive control -- in terms of theoretical foundations, analysis and design methodologies, and application-orient ed tools.Presents LQ and LQG control via two alternative approaches: the Dynamic Programming (DP) and the Polynomial Equation (PE) approach. Discusses predicable control, an important tool in industrial applications, within the framework of LQ control, and presents innovative predictive control schemes having guaranteed stability properties. Offers a unique, thorough presentation of indirect adaptive multi-step predictive controllers, with detailed proofs of globally convergent schemes for both the ideal and the bounded disturbance case. Extends the self-tuning property of one-step-ahead control to multi-step control.For engineers and mathematicians interested in the theory, analysis and design methodologies, and application-oriented tools of optimal, predictive and adaptive control.

Robust Adaptive Control

Robust Adaptive Control PDF Author: Petros Ioannou
Publisher: Courier Corporation
ISBN: 0486320723
Category : Technology & Engineering
Languages : en
Pages : 850

Book Description
Presented in a tutorial style, this comprehensive treatment unifies, simplifies, and explains most of the techniques for designing and analyzing adaptive control systems. Numerous examples clarify procedures and methods. 1995 edition.

Finite Markov Processes and Their Applications

Finite Markov Processes and Their Applications PDF Author: Marius Iosifescu
Publisher: Courier Corporation
ISBN: 0486150585
Category : Mathematics
Languages : en
Pages : 305

Book Description
A self-contained treatment of finite Markov chains and processes, this text covers both theory and applications. Author Marius Iosifescu, vice president of the Romanian Academy and director of its Center for Mathematical Statistics, begins with a review of relevant aspects of probability theory and linear algebra. Experienced readers may start with the second chapter, a treatment of fundamental concepts of homogeneous finite Markov chain theory that offers examples of applicable models. The text advances to studies of two basic types of homogeneous finite Markov chains: absorbing and ergodic chains. A complete study of the general properties of homogeneous chains follows. Succeeding chapters examine the fundamental role of homogeneous infinite Markov chains in mathematical modeling employed in the fields of psychology and genetics; the basics of nonhomogeneous finite Markov chain theory; and a study of Markovian dependence in continuous time, which constitutes an elementary introduction to the study of continuous parameter stochastic processes.