Author: Onésimo Hernández-Lerma
Publisher: Birkhäuser
ISBN: 3034880243
Category : Mathematics
Languages : en
Pages : 213
Book Description
This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, ... } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, .... The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P).
Markov Chains and Invariant Probabilities
Author: Onésimo Hernández-Lerma
Publisher: Birkhäuser
ISBN: 3034880243
Category : Mathematics
Languages : en
Pages : 213
Book Description
This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, ... } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, .... The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P).
Publisher: Birkhäuser
ISBN: 3034880243
Category : Mathematics
Languages : en
Pages : 213
Book Description
This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, ... } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, .... The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P).
Markov Chains and Invariant Probabilities
Author: Onesimo Hernandez-Lerma
Publisher: Springer Science & Business Media
ISBN: 9783764370008
Category : Mathematics
Languages : en
Pages : 234
Book Description
This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, ... } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, .... The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P).
Publisher: Springer Science & Business Media
ISBN: 9783764370008
Category : Mathematics
Languages : en
Pages : 234
Book Description
This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, ... } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, .... The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P).
Markov Chains
Author: Kai Lai Chung
Publisher: Springer Science & Business Media
ISBN: 3642620159
Category : Mathematics
Languages : en
Pages : 312
Book Description
From the reviews: J. Neveu, 1962 in Zentralblatt fr Mathematik, 92. Band Heft 2, p. 343: "Ce livre crit par l'un des plus minents spcialistes en la matire, est un expos trs dtaill de la thorie des processus de Markov dfinis sur un espace dnombrable d'tats et homognes dans le temps (chaines stationnaires de Markov)." N. Jain, 2008 in Selected Works of Kai Lai Chung, edited by Farid AitSahlia (University of Florida, USA), Elton Hsu (Northwestern University, USA), & Ruth Williams (University of California-San Diego, USA), Chapter 1, p. 15: "This monograph deals with countable state Markov chains in both discrete time (Part I) and continuous time (Part II). ... Much of Kai Lai's fundamental work in the field is included in this monograph. Here, for the first time, Kai Lai gave a systematic exposition of the subject which includes classification of states, ratio ergodic theorems, and limit theorems for functionals of the chain."
Publisher: Springer Science & Business Media
ISBN: 3642620159
Category : Mathematics
Languages : en
Pages : 312
Book Description
From the reviews: J. Neveu, 1962 in Zentralblatt fr Mathematik, 92. Band Heft 2, p. 343: "Ce livre crit par l'un des plus minents spcialistes en la matire, est un expos trs dtaill de la thorie des processus de Markov dfinis sur un espace dnombrable d'tats et homognes dans le temps (chaines stationnaires de Markov)." N. Jain, 2008 in Selected Works of Kai Lai Chung, edited by Farid AitSahlia (University of Florida, USA), Elton Hsu (Northwestern University, USA), & Ruth Williams (University of California-San Diego, USA), Chapter 1, p. 15: "This monograph deals with countable state Markov chains in both discrete time (Part I) and continuous time (Part II). ... Much of Kai Lai's fundamental work in the field is included in this monograph. Here, for the first time, Kai Lai gave a systematic exposition of the subject which includes classification of states, ratio ergodic theorems, and limit theorems for functionals of the chain."
Introduction to Stochastic Processes
Author: Gregory F. Lawler
Publisher: CRC Press
ISBN: 1482286114
Category : Mathematics
Languages : en
Pages : 249
Book Description
Emphasizing fundamental mathematical ideas rather than proofs, Introduction to Stochastic Processes, Second Edition provides quick access to important foundations of probability theory applicable to problems in many fields. Assuming that you have a reasonable level of computer literacy, the ability to write simple programs, and the access to software for linear algebra computations, the author approaches the problems and theorems with a focus on stochastic processes evolving with time, rather than a particular emphasis on measure theory. For those lacking in exposure to linear differential and difference equations, the author begins with a brief introduction to these concepts. He proceeds to discuss Markov chains, optimal stopping, martingales, and Brownian motion. The book concludes with a chapter on stochastic integration. The author supplies many basic, general examples and provides exercises at the end of each chapter. New to the Second Edition: Expanded chapter on stochastic integration that introduces modern mathematical finance Introduction of Girsanov transformation and the Feynman-Kac formula Expanded discussion of Itô's formula and the Black-Scholes formula for pricing options New topics such as Doob's maximal inequality and a discussion on self similarity in the chapter on Brownian motion Applicable to the fields of mathematics, statistics, and engineering as well as computer science, economics, business, biological science, psychology, and engineering, this concise introduction is an excellent resource both for students and professionals.
Publisher: CRC Press
ISBN: 1482286114
Category : Mathematics
Languages : en
Pages : 249
Book Description
Emphasizing fundamental mathematical ideas rather than proofs, Introduction to Stochastic Processes, Second Edition provides quick access to important foundations of probability theory applicable to problems in many fields. Assuming that you have a reasonable level of computer literacy, the ability to write simple programs, and the access to software for linear algebra computations, the author approaches the problems and theorems with a focus on stochastic processes evolving with time, rather than a particular emphasis on measure theory. For those lacking in exposure to linear differential and difference equations, the author begins with a brief introduction to these concepts. He proceeds to discuss Markov chains, optimal stopping, martingales, and Brownian motion. The book concludes with a chapter on stochastic integration. The author supplies many basic, general examples and provides exercises at the end of each chapter. New to the Second Edition: Expanded chapter on stochastic integration that introduces modern mathematical finance Introduction of Girsanov transformation and the Feynman-Kac formula Expanded discussion of Itô's formula and the Black-Scholes formula for pricing options New topics such as Doob's maximal inequality and a discussion on self similarity in the chapter on Brownian motion Applicable to the fields of mathematics, statistics, and engineering as well as computer science, economics, business, biological science, psychology, and engineering, this concise introduction is an excellent resource both for students and professionals.
Markov Chains
Author: J. R. Norris
Publisher: Cambridge University Press
ISBN: 9780521633963
Category : Mathematics
Languages : en
Pages : 260
Book Description
Markov chains are central to the understanding of random processes. This is not only because they pervade the applications of random processes, but also because one can calculate explicitly many quantities of interest. This textbook, aimed at advanced undergraduate or MSc students with some background in basic probability theory, focuses on Markov chains and quickly develops a coherent and rigorous theory whilst showing also how actually to apply it. Both discrete-time and continuous-time chains are studied. A distinguishing feature is an introduction to more advanced topics such as martingales and potentials in the established context of Markov chains. There are applications to simulation, economics, optimal control, genetics, queues and many other topics, and exercises and examples drawn both from theory and practice. It will therefore be an ideal text either for elementary courses on random processes or those that are more oriented towards applications.
Publisher: Cambridge University Press
ISBN: 9780521633963
Category : Mathematics
Languages : en
Pages : 260
Book Description
Markov chains are central to the understanding of random processes. This is not only because they pervade the applications of random processes, but also because one can calculate explicitly many quantities of interest. This textbook, aimed at advanced undergraduate or MSc students with some background in basic probability theory, focuses on Markov chains and quickly develops a coherent and rigorous theory whilst showing also how actually to apply it. Both discrete-time and continuous-time chains are studied. A distinguishing feature is an introduction to more advanced topics such as martingales and potentials in the established context of Markov chains. There are applications to simulation, economics, optimal control, genetics, queues and many other topics, and exercises and examples drawn both from theory and practice. It will therefore be an ideal text either for elementary courses on random processes or those that are more oriented towards applications.
Essentials of Stochastic Processes
Author: Richard Durrett
Publisher: Springer
ISBN: 3319456148
Category : Mathematics
Languages : en
Pages : 282
Book Description
Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.
Publisher: Springer
ISBN: 3319456148
Category : Mathematics
Languages : en
Pages : 282
Book Description
Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatment of other topics useful for applications has been expanded. In addition, the ordering of topics has been improved; for example, the difficult subject of martingales is delayed until its usefulness can be applied in the treatment of mathematical finance.
Basics of Applied Stochastic Processes
Author: Richard Serfozo
Publisher: Springer Science & Business Media
ISBN: 3540893326
Category : Mathematics
Languages : en
Pages : 452
Book Description
Stochastic processes are mathematical models of random phenomena that evolve according to prescribed dynamics. Processes commonly used in applications are Markov chains in discrete and continuous time, renewal and regenerative processes, Poisson processes, and Brownian motion. This volume gives an in-depth description of the structure and basic properties of these stochastic processes. A main focus is on equilibrium distributions, strong laws of large numbers, and ordinary and functional central limit theorems for cost and performance parameters. Although these results differ for various processes, they have a common trait of being limit theorems for processes with regenerative increments. Extensive examples and exercises show how to formulate stochastic models of systems as functions of a system’s data and dynamics, and how to represent and analyze cost and performance measures. Topics include stochastic networks, spatial and space-time Poisson processes, queueing, reversible processes, simulation, Brownian approximations, and varied Markovian models. The technical level of the volume is between that of introductory texts that focus on highlights of applied stochastic processes, and advanced texts that focus on theoretical aspects of processes.
Publisher: Springer Science & Business Media
ISBN: 3540893326
Category : Mathematics
Languages : en
Pages : 452
Book Description
Stochastic processes are mathematical models of random phenomena that evolve according to prescribed dynamics. Processes commonly used in applications are Markov chains in discrete and continuous time, renewal and regenerative processes, Poisson processes, and Brownian motion. This volume gives an in-depth description of the structure and basic properties of these stochastic processes. A main focus is on equilibrium distributions, strong laws of large numbers, and ordinary and functional central limit theorems for cost and performance parameters. Although these results differ for various processes, they have a common trait of being limit theorems for processes with regenerative increments. Extensive examples and exercises show how to formulate stochastic models of systems as functions of a system’s data and dynamics, and how to represent and analyze cost and performance measures. Topics include stochastic networks, spatial and space-time Poisson processes, queueing, reversible processes, simulation, Brownian approximations, and varied Markovian models. The technical level of the volume is between that of introductory texts that focus on highlights of applied stochastic processes, and advanced texts that focus on theoretical aspects of processes.
Large Deviations for Additive Functionals of Markov Chains
Author: Alejandro D. de Acosta
Publisher: American Mathematical Soc.
ISBN: 0821890891
Category : Mathematics
Languages : en
Pages : 120
Book Description
Publisher: American Mathematical Soc.
ISBN: 0821890891
Category : Mathematics
Languages : en
Pages : 120
Book Description
Markov Chains and Stochastic Stability
Author: Sean Meyn
Publisher: Cambridge University Press
ISBN: 0521731828
Category : Mathematics
Languages : en
Pages : 623
Book Description
New up-to-date edition of this influential classic on Markov chains in general state spaces. Proofs are rigorous and concise, the range of applications is broad and knowledgeable, and key ideas are accessible to practitioners with limited mathematical background. New commentary by Sean Meyn, including updated references, reflects developments since 1996.
Publisher: Cambridge University Press
ISBN: 0521731828
Category : Mathematics
Languages : en
Pages : 623
Book Description
New up-to-date edition of this influential classic on Markov chains in general state spaces. Proofs are rigorous and concise, the range of applications is broad and knowledgeable, and key ideas are accessible to practitioners with limited mathematical background. New commentary by Sean Meyn, including updated references, reflects developments since 1996.
Invariant Probabilities of Markov-Feller Operators and Their Supports
Author: Radu Zaharopol
Publisher: Springer Science & Business Media
ISBN: 376437344X
Category : Mathematics
Languages : en
Pages : 118
Book Description
This book covers invariant probabilities for a large class of discrete-time homogeneous Markov processes known as Feller processes. These Feller processes appear in the study of iterated function systems with probabilities, convolution operators, and certain time series. From the reviews: "A very useful reference for researchers wishing to enter the area of stationary Markov processes both from a probabilistic and a dynamical point of view." --MONATSHEFTE FÜR MATHEMATIK
Publisher: Springer Science & Business Media
ISBN: 376437344X
Category : Mathematics
Languages : en
Pages : 118
Book Description
This book covers invariant probabilities for a large class of discrete-time homogeneous Markov processes known as Feller processes. These Feller processes appear in the study of iterated function systems with probabilities, convolution operators, and certain time series. From the reviews: "A very useful reference for researchers wishing to enter the area of stationary Markov processes both from a probabilistic and a dynamical point of view." --MONATSHEFTE FÜR MATHEMATIK