Marginal Stability Studies of Microturbulence Near ITB Onset on Alcator C-Mod PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Marginal Stability Studies of Microturbulence Near ITB Onset on Alcator C-Mod PDF full book. Access full book title Marginal Stability Studies of Microturbulence Near ITB Onset on Alcator C-Mod by . Download full books in PDF and EPUB format.

Marginal Stability Studies of Microturbulence Near ITB Onset on Alcator C-Mod

Marginal Stability Studies of Microturbulence Near ITB Onset on Alcator C-Mod PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Insight into microturbulence and transport in tokamak plasmas is being sought using linear simulations of drift waves near the onset time of an internal transport barrier (ITB) on Alcator C-Mod. Microturbulence is likely generated by instabilities of drift waves and causes transport of heat and particles. This transport is studied because the containment of heat and particles is important for the achievement of practical nuclear fusion. We investigate nearness to marginal stability of ion temperature gradient (ITG) modes for conditions in the ITB region at the trigger time for ITB formation. Data from C-Mod, analyzed by TRANSP (a time dependent transport analysis code), is read by the code TRXPL and made into input files for the parallel gyrokinetic model code GS2. Temperature and density gradients in these input files are modified to produce new input files. Results from these simulations show a weak ITG instability in the barrier region at the time of onset, above marginal stability; the normalized critical temperature gradient is 80% of the experimental temperature gradient. The growth rate increases linearly above the critical value, with the spectrum of ITG modes remaining parabolic up to a multiplicative factor of 2. The effect of varying density gradients is found to be much weaker and causes the fastest growing drift mode to change from ITG to trapped electron mode character. Simulations were carried out on the NERSC IBM 6000 SP using 4 nodes, 16 processors per node. Predictive simulations were examined for converged instability after 10,000-50,000 timesteps in each case. Each simulation took approximately 30 minutes to complete on the IBM SP.

Marginal Stability Studies of Microturbulence Near ITB Onset on Alcator C-Mod

Marginal Stability Studies of Microturbulence Near ITB Onset on Alcator C-Mod PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Insight into microturbulence and transport in tokamak plasmas is being sought using linear simulations of drift waves near the onset time of an internal transport barrier (ITB) on Alcator C-Mod. Microturbulence is likely generated by instabilities of drift waves and causes transport of heat and particles. This transport is studied because the containment of heat and particles is important for the achievement of practical nuclear fusion. We investigate nearness to marginal stability of ion temperature gradient (ITG) modes for conditions in the ITB region at the trigger time for ITB formation. Data from C-Mod, analyzed by TRANSP (a time dependent transport analysis code), is read by the code TRXPL and made into input files for the parallel gyrokinetic model code GS2. Temperature and density gradients in these input files are modified to produce new input files. Results from these simulations show a weak ITG instability in the barrier region at the time of onset, above marginal stability; the normalized critical temperature gradient is 80% of the experimental temperature gradient. The growth rate increases linearly above the critical value, with the spectrum of ITG modes remaining parabolic up to a multiplicative factor of 2. The effect of varying density gradients is found to be much weaker and causes the fastest growing drift mode to change from ITG to trapped electron mode character. Simulations were carried out on the NERSC IBM 6000 SP using 4 nodes, 16 processors per node. Predictive simulations were examined for converged instability after 10,000-50,000 timesteps in each case. Each simulation took approximately 30 minutes to complete on the IBM SP.

Marginal Stability of Microturbulence Near ITB Onset on Alcator C-Mod

Marginal Stability of Microturbulence Near ITB Onset on Alcator C-Mod PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Insight into microturbulence and transport in tokamak plasmas is being sought using linear simulations of drift waves near the onset time of an internal transport barrier (ITB) on Alcator C-Mod. Microturbulence is likely generated by instabilities of drift waves and causes transport of heat and particles. This transport is studied because the containment of heat and particles is important for the achievement of practical nuclear fusion. We investigate nearness to marginal stability of ion-temperature-gradient (ITG) modes for conditions in the ITB region at the trigger time for ITB formation. Data from C-Mod, analyzed by TRANSP (a time-dependent transport analysis code), is read by the code TRXPL and made into input files for the parallel gyrokinetic model code GS2. Temperature and density gradients in these input files are modified to produce new input files. Results from these simulations show a weak ITG instability in the barrier region at the time of onset, above marginal stability; the normalized critical temperature gradient is 80% of the experimental temperature gradient. The growth rate increases linearly above the critical value, with the spectrum of ITG modes remaining parabolic up to a multiplicative factor of 2. The effect of varying density gradients is found to be much weaker and causes the fastest growing drift mode to change from ITG to trapped-electron mode character. Simulations were carried out on the NERSC [National Energy Research Supercomputer Center] IBM 6000 SP using 4 nodes, 16 processors per node. Predictive simulations were examined for converged instability after 10,000-50,000 time-steps in each case. Each simulation took approximately 30 minutes to complete on the IBM SP.

Iter Physics

Iter Physics PDF Author: C Wendell Horton, Jr
Publisher: World Scientific
ISBN: 9814678686
Category : Science
Languages : en
Pages : 248

Book Description
The promise of a vast and clean source of thermal power drove physics research for over fifty years and has finally come to collimation with the international consortium led by the European Union and Japan, with an agreement from seven countries to build a definitive test of fusion power in ITER. It happened because scientists since the Manhattan project have envisioned controlled nuclear fusion in obtaining energy with no carbon dioxide emissions and no toxic nuclear waste products.This large toroidal magnetic confinement ITER machine is described from confinement process to advanced physics of plasma-wall interactions, where pulses erupt from core plasma blistering the machine walls. Emissions from the walls reduce the core temperature which must remain ten times hotter than the 15 million degree core solar temperature to maintain ITER fusion power. The huge temperature gradient from core to wall that drives intense plasma turbulence is described in detail.Also explained are the methods designed to limit the growth of small magnetic islands, the growth of edge localized plasma plumes and the solid state physics limits of the stainless steel walls of the confinement vessel from the burning plasma. Designs of the wall coatings and the special 'exhaust pipe' for spent hot plasma are provided in two chapters. And the issues associated with high-energy neutrons — about 10 times higher than in fission reactions — and how they are managed in ITER, are detailed.

Fusion Physics

Fusion Physics PDF Author: Mitsuru Kikuchi
Publisher:
ISBN: 9789201304100
Category : Reference
Languages : en
Pages : 0

Book Description
Provides an introduction to nuclear fusion and its status and prospects, and features specialized chapters written by leaders in the field, presenting the main research and development concepts in fusion physics. At over 1100 pages, this publication provides an unparalleled resource for fusion physicists and engineers.

Measuring Discharge with Acoustic Doppler Current Profilers from a Moving Boat

Measuring Discharge with Acoustic Doppler Current Profilers from a Moving Boat PDF Author: David S. Mueller
Publisher: CreateSpace
ISBN: 9781500222666
Category : Technology & Engineering
Languages : en
Pages : 82

Book Description
The mission of the U.S. Geological Survey (USGS) Water Resources Discipline is to provide the information and understanding needed for wise management of the Nation's water resources. Inherent in this mission is the responsibility of collecting data that accurately describe the physical, chemical, and biological attributes of water systems. These data are used for environmental and resource assessments by the USGS, other government agencies and scientific organizations, and the general public. Reliable and quality-assured data are essential to the credibility and impartiality of the water-resources appraisals carried out by the USGS.

Metallic Glasses

Metallic Glasses PDF Author: Behrooz Movahedi
Publisher: BoD – Books on Demand
ISBN: 9535125117
Category : Technology & Engineering
Languages : en
Pages : 180

Book Description
Metallic glasses and amorphous materials have attracted much more attention in the last two decades. A noncrystalline solid produced by continuous cooling from the liquid state is known as a glass. From the other point of view, a noncrystalline material, obtained by any other process, for example, vapor deposition or solid-state processing methods such as mechanical alloying, but not directly from the liquid state, is referred to as an amorphous material. At this moment, bulk metallic glasses (BMG) are appearing as a new class of metallic materials with unique physical and mechanical properties for structural and functional usage. Extreme values of strength, fracture toughness, magnetic properties, corrosion resistance, and other properties have been registered in BMG materials.

Plasma Scattering of Electromagnetic Radiation

Plasma Scattering of Electromagnetic Radiation PDF Author: John Sheffield
Publisher: Academic Press
ISBN: 0080952038
Category : Science
Languages : en
Pages : 512

Book Description
This work presents one of the most powerful methods of plasma diagnosis in exquisite detail, to guide researchers in the theory and measurement techniques of light scattering in plasmas. Light scattering in plasmas is essential in the research and development of fusion energy, environmental solutions, and electronics.Referred to as the "Bible" by researchers, the work encompasses fusion and industrial applications essential in plasma research. It is the only comprehensive resource specific to the plasma scattering technique. It provides a wide-range of experimental examples and discussion of their principles with worked examples to assist researchers in applying the theory. - Computing techniques for solving basic equations helps researchers compare data to the actual experiment - New material on advances on the experimental side, such as the application of high density plasmas of inertial fusion - Worked out examples of the scattering technique for easier comprehension of theory

Tokamak Start-Up: Problems and Scenarios Related to the Transient Phases of a Thermonuclear Fusion Reactor (Ettor Majorana International Science Series)

Tokamak Start-Up: Problems and Scenarios Related to the Transient Phases of a Thermonuclear Fusion Reactor (Ettor Majorana International Science Series) PDF Author: Heinz Knoepfel
Publisher: Springer
ISBN: 1475718896
Category : Technology & Engineering
Languages : en
Pages : 425

Book Description
This book contains the papers presented at the Course on "Tokamak Startup - Problems and Scenarios Related to the Transient Phases of a Thermonuclear Fusion Reactor" which was held in Erice, July 14-20, 1985. The fact that the critical startup and transient phases of a tokamak reactor are now the specific subject of a comprehensive international gathering of fusion specialists seems indicative of the substantial pro gress made in recent years towards attaining controlled ignition of a nuclear fusion fuel, i.e. towards demonstrating the scientific feasibili ty of controlled thermonuclear fusion. In fact, the steady-state burning phase has attracted so far most of the attention of fusion physicists and engineers, as it is conceptually more rewarding, and theoretically easier to handle. However, as for many large engineering systems, - nuclear fis- ... ':1' " . 10 ' ... Entrance to San Rocco's lecturing hall v sion power plants, or aerospace crafts, for example - the major issues of design and operation lie often in the startup, shutdown and power tran sieQt phases, rather than at the full load, or at cruising regimes. In ehoosing the contributions to this 7th Course of Prof. B.

Waves And Instabilities In Plasmas

Waves And Instabilities In Plasmas PDF Author: Liu Chen
Publisher: World Scientific
ISBN: 9814507733
Category : Science
Languages : en
Pages : 190

Book Description
The topics covered in these notes are selective and tend to emphasize more on kinetic-theory approaches to waves and instabilities in both uniform and non-uniform plasmas, students are assumed to have some basic knowledge of plasma dynamics in terms of single-particle and fluid descriptions.

Modern Plasma Physics: Volume 1, Physical Kinetics of Turbulent Plasmas

Modern Plasma Physics: Volume 1, Physical Kinetics of Turbulent Plasmas PDF Author: Patrick H. Diamond
Publisher: Cambridge University Press
ISBN: 9781107424562
Category : Science
Languages : en
Pages : 0

Book Description
This three-volume series presents the ideas, models and approaches essential to understanding plasma dynamics and self-organization for researchers and graduate students in plasma physics, controlled fusion and related fields such as plasma astrophysics. Volume I develops the physical kinetics of plasma turbulence through a focus on quasi-particle models and dynamics. It discusses the essential physics concepts and theoretical methods for describing weak and strong fluid and phase space turbulence in plasma systems far from equilibrium. The book connects the traditionally 'plasma' topic of weak or wave turbulence theory to more familiar fluid turbulence theory, and extends both to the realm of collisionless phase space turbulence. This gives readers a deeper understanding of these related fields, and builds a foundation for future applications to multi-scale processes of self-organization in tokamaks and other confined plasmas. This book emphasizes the conceptual foundations and physical intuition underpinnings of plasma turbulence theory.