Mapping Fusarium Head Blight QTL in the Chinese Wheat Line PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Mapping Fusarium Head Blight QTL in the Chinese Wheat Line PDF full book. Access full book title Mapping Fusarium Head Blight QTL in the Chinese Wheat Line by David Evans Bowen. Download full books in PDF and EPUB format.

Mapping Fusarium Head Blight QTL in the Chinese Wheat Line

Mapping Fusarium Head Blight QTL in the Chinese Wheat Line PDF Author: David Evans Bowen
Publisher:
ISBN:
Category :
Languages : en
Pages : 196

Book Description


Mapping Fusarium Head Blight Resistance QTL in the Chinese Wheat Line WUHAN 3

Mapping Fusarium Head Blight Resistance QTL in the Chinese Wheat Line WUHAN 3 PDF Author: Kari-Lynne McGowan
Publisher:
ISBN:
Category :
Languages : en
Pages : 222

Book Description


Mapping Fusarium Head Blight QTL in the Chinese Wheat Line

Mapping Fusarium Head Blight QTL in the Chinese Wheat Line PDF Author: David Evans Bowen
Publisher:
ISBN:
Category :
Languages : en
Pages : 196

Book Description


Mapping QTL for Fusarium Head Blight Resistance in Chinese Wheat Landraces

Mapping QTL for Fusarium Head Blight Resistance in Chinese Wheat Landraces PDF Author: Jin Cai
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Fusarium head blight (FHB) is one of the most devastative diseases in wheat. Growing resistant cultivars is one of the most effective strategies to minimize the disease damage. Huangcandou (HCD) is a Chinese wheat landrace showing a high level of resistance to FHB spread within a spike (type II). To identify quantitative traits loci (QTL) for resistance in HCD, a population of 190 recombinant inbred lines (RILs) were developed from a cross between HCD and Jagger, a susceptible hard winter wheat (HWW) released in Kansas. The population was evaluated for type II resistance at the greenhouses of Kansas State University. After initial marker screening, 261 polymorphic simple-sequence repeats (SSR) between parents were used for analysis of the RIL population. Among three QTL identified, two from HCD were mapped on the short arms of chromosomes 3B (3BS) and 3A (3AS). The QTL on the distal end of 3BS showed a major effect on type II resistance in all three experiments. This QTL coincides with a previously reported Fhb1, and explained 28.3% of phenotypic variation. The QTL on 3AS explained 9.7% of phenotypic variation for mean PSS over three experiments. The third QTL from chromosome 2D of Jagger explained 6.5% of phenotypic variation. Allelic substitution using the closest marker to each QTL revealed that substitution of Jagger alleles of two QTL on 3AS and 3BS with those from HCD significantly reduced the PSS. HCD containing both QTL on 3AS and 3BS with a large effect on type II resistance can be an alternative source of FHB resistance for improving FHB type II resistance in wheat. Besides, meta-analyses were used to estimate 95% confidence intervals (CIs) of 24 mapped QTL in five previously mapped populations derived from Chinese landraces: Wangshuibai (WSB), Haiyanzhong (HYZ), Huangfangzhu (HFZ), Baishanyuehuang (BSYH) and Huangcandou (HCD). Nineteen QTL for FHB type II resistance were projected to 10 QTL clusters. Five QTL on chromosomes 1A, 5A, 7A, and 3BS (2) were identified as confirmed QTL that have stable and consistent effects on FHB resistance and markers in these meta-QTL regions should be useful for marker-assisted breeding.

Meta-analysis of QTL for Fusarium Head Blight Resistance in Chinese Wheat Landraces Using Genotyping by Sequencing

Meta-analysis of QTL for Fusarium Head Blight Resistance in Chinese Wheat Landraces Using Genotyping by Sequencing PDF Author: Jin Cai
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Fusarium head blight (FHB) is a devastating fungal disease in wheat, reducing not only grain yield but also quality. The pathogen produces the mycotoxin deoxynivalenol (DON) that induces severe toxicological problems in human and animals. Using host resistance has been the most efficient way to control the disease. To identify quantitative trait loci (QTLs) for FHB resistance in Chinese landrace Haiyanzhong (HYZ), a recombinant inbred lines (RILs) population derived from a cross between HYZ and Wheaton was developed. The RILs were evaluated for percentage of symptomatic spikelets (PSS) in three greenhouse experiments, and genotyped using simple sequence repeats (SSRs) and single nucleotide polymorphism (SNPs) developed from genotyping-by-sequencing (GBS). Eight QTLs were identified for type II (PSS) resistance on chromosomes 5A, 6B, 7D, 2B (2), 3B, 4B, and 4D, with 5A as the major QTL. Ten SNPs closely linked to 5A, 6B, and 2B QTLs were successfully converted to Kompetitave allelic specific PCR (KASP) assays. To identify common QTLs across different populations, we constructed high-density GBS-SNP maps in an additional four RIL populations derived from the Chinese landraces, Wangshuibai (WSB), Baishanyuehuang (BSYH), Huangfangzhu (HFZ), and Huangchandou (HCD) and conducted meta-analysis of the QTLs for FHB resistance using a consensus map developed from the five populations. We identified six MQTLs on chromosomes 3BS (2), 3A, 3D, 2D, and 4D and 23 tightly linked GBS-SNPs to the MQTLs. These GBS-SNPs were successfully converted to KASPs. The KASPs linked to MQTLs can be used for pyramiding these QTL in breeding programs. To quickly reduce FHB damage in U.S. hard winter wheat (HWW), we transferred Fhb1, a major QTL with stable effects on FHB resistance, from Ning7840 into three adapted HWW cultivars Overland, Jagger, and Overley, by marker-assisted backcross (MAB), and assessed the effect of Fhb1 on FHB resistance in these different backgrounds. The results showed that Fhb1 can significantly lower FHB severity, Fusarium-damaged kernel (FDK), and DON accumulation in the all the three HWW backgrounds. Some of the selected lines showed high levels of FHB resistance, but agronomically similar traits as recurrent parents, can be used as resistant parents to improve HWW FHB resistance.

Identification of New Sources and Mapping of QTL for FHB Resistance in Asian Wheat Germplasm

Identification of New Sources and Mapping of QTL for FHB Resistance in Asian Wheat Germplasm PDF Author: Jianbin Yu
Publisher:
ISBN:
Category :
Languages : en
Pages : 112

Book Description
Growing resistant cultivars is an economically effective method to control wheat disease Fusarium head blight (FHB) caused by Fusarium graminearum. Ninety-five wheat lines mainly from China and Japan were evaluated for resistance to initial infection (type I), spread of symptoms within a spike (type II), and deoxynivalenol (DON) accumulation in infected grains (type III). Most of lines were resistant or moderately resistant, 15 lines had DON content lower than 2 ppm and six lines showed a high level of resistance for all the three types. Deoxynivalenol content was significantly correlated with type II, but not type I resistance.

Wheat Blast

Wheat Blast PDF Author: Sudheer Kumar
Publisher: CRC Press
ISBN: 0429894074
Category : Science
Languages : en
Pages : 157

Book Description
Wheat Blast provides systematic and practical information on wheat blast pathology, summarises research progress and discusses future perspectives based on current understanding of the existing issues. The book explores advance technologies that may help in deciding the path for future research and development for better strategies and techniques to manage the wheat blast disease. It equips readers with basic and applied understanding on the identification of disease, its distribution and chances of further spread in new areas, its potential to cause yield losses to wheat, the conditions that favour disease development, disease prediction modelling, resistance breeding methods and management strategies against wheat blast. Features: Provides comprehensive information on wheat blast pathogen and its management under a single umbrella Covers disease identification and diagnostics which will be helpful to check introduction in new areas Discusses methods and protocol to study the different aspects of the disease such as diagnostics, variability, resistance screening, epiphytotic creation etc. Gives deep insight on the past, present and future outlook of wheat blast research progress This book’s chapters are contributed by experts and pioneers in their respective fields and it provides comprehensive insight with updated findings on wheat blast research. It serves as a valuable reference for researchers, policy makers, students, teachers, farmers, seed growers, traders, and other stakeholders dealing with wheat.

Genetic Mapping of QTL for Fusarium Head Blight Resistance in Winter Wheat Cultivars Art and Everest

Genetic Mapping of QTL for Fusarium Head Blight Resistance in Winter Wheat Cultivars Art and Everest PDF Author: Marshall Clinesmith
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Fusarium head blight (FHB) is a fungal disease, mostly commonly associated with F. graminearum, which affects cereal crops such as wheat resulting in substantial yield losses and reductions in grain quality. The onset of the disease can occur rapidly when warm, wet or humid weather coincides with flowering in the spring. The pathogen also produces mycotoxins such as deoxynivalenol (DON) that accumulate in the grain and can be toxic to humans and animals. This results in additional economic losses as contaminated grain must be discarded or blended to reduce the amount of toxin in order to meet federal regulatory limits. Development and deployment of resistant cultivars has proved to be an effective method to combat the disease, and many resistant sources have been reported in the literature with the majority of major resistance coming from Chinese landraces. Transferring resistance from these sources into cultivars adapted to the U.S. has been a slow process due to linkage of FHB resistance genes with poor agronomic traits. Therefore, it is important for breeders to search for sources of resistance in native material adapted to their local conditions. In this study, we aimed to identify quantitative trait loci (QTL) for resistance to spread of FHB within the head (Type II resistance), accumulation of DON toxin in grain (Type III resistance), and resistance to kernel infection (Type IV resistance). Plant material consisted of 148 doubled haploid (DH) lines from a cross between the two moderately resistant hard red winter wheat (HRWW) cultivars Art and Everest. The study was conducted for two years using a point inoculation technique in a greenhouse in Manhattan, KS. Three QTL conferring resistance to FHB traits were detected on chromosomes 2D, 4B, and 4D. The QTL on chromosomes 4B and 4D overlapped with the major height genes Rht1 and Rht2, respectively. Plant height has shown previous associations with FHB, though the underlying cause of these associations is not well understood. The majority of results have reported increased susceptibility associated with shorter plant types; however, in this study, the haplotype analysis for the Rht-B1 and Rht-D1 loci showed an association between the dwarfing alleles and increased resistance to FHB. This suggests either pleiotropic effects of these loci or perhaps linkage with nearby genes for FHB resistance. Markers close to the peaks of the FHB resistance QTL have the potential for Kompetitive Allele Specific PCR (KASP) marker development and subsequent use in marker assisted selection (MAS) to help improve overall FHB resistance within breeding programs.

Fusarium Head Blight of Wheat and Barley

Fusarium Head Blight of Wheat and Barley PDF Author: Kurt J. Leonard
Publisher: American Phytopathological Society
ISBN:
Category : Barley
Languages : en
Pages : 544

Book Description
The book provides a comprehensive record of current knowledge on the nature of Fusarium head blight, the damage it causes, and current research on how to control it. The book begins with a historical account of Fusarium head blight epidemics that gives context to recent attempts to control epidemics in wheat and barley. A review of pathogen taxonomy and population biology helps scientists to see relationships among head blight pathogens and other Fusarium species. The information on epidemiology included in this review also provides an understanding of the weather conditions and cultural practices that promote explosive epidemics. New information on infection processes will lead the reader to a better understanding of how to breed for resistance in wheat and barley.

Mapping Quantitative Trait Loci for Fusarium Head Blight Resistance in the U.S. Winter Wheat

Mapping Quantitative Trait Loci for Fusarium Head Blight Resistance in the U.S. Winter Wheat PDF Author: Abdulrahman Hashimi
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Fusarium head blight (FHB) is one of the devastating wheat diseases worldwide. It reduces not only yield, but also grain quality due to mycotoxins produced by the pathogen Fusarium graminearum. To identify consistent quantitative trait loci (QTLs) for FHB resistance in two US winter wheat 'CI13227' and 'Lyman', we genotyped a double haploid (DH) population from '' x 'CI13227' X 'Lakin' using Illumina wheat 90K single nucleotide polymorphism (SNP) chips and two recombinant inbred line (RIL) populations from 'Lyman'x 'Overley' and 'Lyman'x 'CI13227' using genotyping-by-sequencing (GBS) and evaluated the three populations for FHB type II resistance in greenhouse and field experiments. QTL mapping identified four QTLs on chromosomes 4BS, 5AL, 2DS and 7A in the 'CI13227' x 'Lakin' population, which explained 8-17% of the phenotypic variation in different experiments. The QTL on 4BS from CI13227 showed the largest effect among QTLs detected in the 'CI13227' x 'Lakin' population and were consistently detected in three experiments. 'CI13227' contributed the resistance alleles at QTLs on 2DS and 7A, whereas 'Lakin' contributed the resistance allele at 5AL QTL. The 7A QTL was detected in only one experiment. The QTLs on the chromosomes 4B and 2D showed a high correlation with plant height, suggesting a linked genes or pleiotropic effect of these QTLs. In the 'Lyman'/'Overley' population, six QTLs were located on the chromosomes 1A, 2A, 3A, 1B, 2B and 4B, and explained 5.5 -21% of the phenotypic variations for type II resistance. The QTL on 3A from 'Lyman' showed the largest effects and detected in two greenhouses experiments. Significant correlation was not detected between the PSS and plant height in this population. In the 'Lyman'/'CI13227' population, four QTLs were detected with two QTLs on chromosomes 1A and 7A from 'CI13227' and chromosomes 2B and 3A from 'Lyman' and QTLs on 7A from 'CI13227' and 2B and 3A from 'Lyman' confirmed the results from the previous two populations. Markers for the repeatable QTLs were converted into Kompetitive allele specific PCR (KASP) markers for marker-assisted breeding to pyramid these QTLs in U.S. winter wheat.

Identification and Deployment of QTL for Fusarium Head Blight Resistance in U.S. Hard Winter Wheat

Identification and Deployment of QTL for Fusarium Head Blight Resistance in U.S. Hard Winter Wheat PDF Author: Nosheen Fatima
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Fusarium head blight (FHB) is one of the most damaging diseases in wheat, which impacts both grain yield and quality drastically. Recently, the disease has become more prevalent in the hard winter wheat (HWW) grown areas of the United States including Oklahoma where FHB has not been reported before. Growing resistant cultivars is the most economical and effective strategy for disease management. To dissect quantitative trait loci (QTL) for FHB resistance in a moderately resistant hard winter wheat (HWW) cultivar, Overland, a population of 186 recombinant inbred lines (RILs) was developed from the cross between Overland and Overley, a susceptible HWW cultivar from Kansas. The RILs were evaluated for FHB type II resistance in one field and three greenhouse experiments and genotyped using genotyping-by-sequencing (GBS) markers. Three FHB resistance QTLs were mapped on Chromosomes 4DL, 4AL, and 5BL. The QTL on 4DL was the most consistent one and explained up to 13% of the phenotypic variation for type II resistance and 14 % for low Fusarium damaged kernels (FDK). Two GBS markers closely linked to the 4DL QTL were successfully converted to Kbioscience competitive allelic specific PCR (KASP) assays and can be used in marker-assisted breeding. In breeding, a single QTL may provide only partial resistance and pyramiding of several resistance QTLs in a cultivar can provide more protection in FHB epidemics. Fhb1 is a major QTL for FHB resistance from a Chinese source and Fhb3 is an alien gene from wild rye grass (Leymus racemosus). To study the effects of these QTLs individually and cumulatively in hard winter wheat backgrounds, they were transferred into two HWW cultivars Overland and Jagger. The results show that Fhb1 significantly increased FHB resistance, but Fhb3 did not. Thus, Fhb3 is not an effective gene for improvement of FHB resistance in HWW.