Machine Learning in Insurance PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Machine Learning in Insurance PDF full book. Access full book title Machine Learning in Insurance by Jens Perch Nielsen. Download full books in PDF and EPUB format.

Machine Learning in Insurance

Machine Learning in Insurance PDF Author: Jens Perch Nielsen
Publisher: MDPI
ISBN: 3039364472
Category : Business & Economics
Languages : en
Pages : 260

Book Description
Machine learning is a relatively new field, without a unanimous definition. In many ways, actuaries have been machine learners. In both pricing and reserving, but also more recently in capital modelling, actuaries have combined statistical methodology with a deep understanding of the problem at hand and how any solution may affect the company and its customers. One aspect that has, perhaps, not been so well developed among actuaries is validation. Discussions among actuaries’ “preferred methods” were often without solid scientific arguments, including validation of the case at hand. Through this collection, we aim to promote a good practice of machine learning in insurance, considering the following three key issues: a) who is the client, or sponsor, or otherwise interested real-life target of the study? b) The reason for working with a particular data set and a clarification of the available extra knowledge, that we also call prior knowledge, besides the data set alone. c) A mathematical statistical argument for the validation procedure.

Machine Learning in Insurance

Machine Learning in Insurance PDF Author: Jens Perch Nielsen
Publisher: MDPI
ISBN: 3039364472
Category : Business & Economics
Languages : en
Pages : 260

Book Description
Machine learning is a relatively new field, without a unanimous definition. In many ways, actuaries have been machine learners. In both pricing and reserving, but also more recently in capital modelling, actuaries have combined statistical methodology with a deep understanding of the problem at hand and how any solution may affect the company and its customers. One aspect that has, perhaps, not been so well developed among actuaries is validation. Discussions among actuaries’ “preferred methods” were often without solid scientific arguments, including validation of the case at hand. Through this collection, we aim to promote a good practice of machine learning in insurance, considering the following three key issues: a) who is the client, or sponsor, or otherwise interested real-life target of the study? b) The reason for working with a particular data set and a clarification of the available extra knowledge, that we also call prior knowledge, besides the data set alone. c) A mathematical statistical argument for the validation procedure.

The INSURTECH Book

The INSURTECH Book PDF Author: Sabine L.B VanderLinden
Publisher: John Wiley & Sons
ISBN: 1119362210
Category : Business & Economics
Languages : en
Pages : 328

Book Description
The definitive compendium for the Insurance Digital Revolution From slow beginnings in 2014, InsurTech has captured US$7billion in investment since 2010 — a 10% annual compound growth rate is predicted until at least 2020. Three in four insurance companies believe some part of their business is at risk of disruption and understanding the trends, drivers and emerging technologies behind Insurance’s Digital Revolution is a business-critical priority for all growth-minded firms. The InsurTech Book offers essential updates, critical thinking and actionable insight — globally — from start-ups, incumbents, investors, tech companies, advisors and other partners in this evolving ecosystem, in one volume. For some, Insurance is either facing an existential threat; for others, it is a sector on the brink of transforming itself. Either way, business models, value chains, customer understanding and engagement, organisational structures and even what Insurance is for, is never going to be the same. Be informed, be part of it. Learn from diverse experiences, mindsets and applications of technologies Discover new ways of defining and grasping growth opportunities Get the inside track from innovators, disruptors and incumbents Be updated on the evolution of InsurTech, why it is happening and how it will evolve Explore visions of the future of Insurance to help shape yours The InsurTech Book is your indispensable guide to a sector in transformation.

Disrupting Finance

Disrupting Finance PDF Author: Theo Lynn
Publisher: Springer
ISBN: 3030023303
Category : Business & Economics
Languages : en
Pages : 194

Book Description
This open access Pivot demonstrates how a variety of technologies act as innovation catalysts within the banking and financial services sector. Traditional banks and financial services are under increasing competition from global IT companies such as Google, Apple, Amazon and PayPal whilst facing pressure from investors to reduce costs, increase agility and improve customer retention. Technologies such as blockchain, cloud computing, mobile technologies, big data analytics and social media therefore have perhaps more potential in this industry and area of business than any other. This book defines a fintech ecosystem for the 21st century, providing a state-of-the art review of current literature, suggesting avenues for new research and offering perspectives from business, technology and industry.

The Digital Journey of Banking and Insurance, Volume II

The Digital Journey of Banking and Insurance, Volume II PDF Author: Volker Liermann
Publisher: Springer Nature
ISBN: 3030788296
Category : Business & Economics
Languages : en
Pages : 362

Book Description
This book, the second one of three volumes, gives practical examples by a number of use cases showing how to take first steps in the digital journey of banks and insurance companies. The angle shifts over the volumes from a business-driven approach in “Disruption and DNA” to a strong technical focus in “Data Storage, Processing and Analysis”, leaving “Digitalization and Machine Learning Applications” with the business and technical aspects in-between. This second volume mainly emphasizes use cases as well as the methods and technologies applied to drive digital transformation (such as processes, leveraging computational power and machine learning models).

Analytics for Insurance

Analytics for Insurance PDF Author: Tony Boobier
Publisher: John Wiley & Sons
ISBN: 1119141079
Category : Business & Economics
Languages : en
Pages : 296

Book Description
The business guide to Big Data in insurance, with practical application insight Big Data and Analytics for Insurers is the industry-specific guide to creating operational effectiveness, managing risk, improving financials, and retaining customers. Written from a non-IT perspective, this book focusses less on the architecture and technical details, instead providing practical guidance on translating analytics into target delivery. The discussion examines implementation, interpretation, and application to show you what Big Data can do for your business, with insights and examples targeted specifically to the insurance industry. From fraud analytics in claims management, to customer analytics, to risk analytics in Solvency 2, comprehensive coverage presented in accessible language makes this guide an invaluable resource for any insurance professional. The insurance industry is heavily dependent on data, and the advent of Big Data and analytics represents a major advance with tremendous potential – yet clear, practical advice on the business side of analytics is lacking. This book fills the void with concrete information on using Big Data in the context of day-to-day insurance operations and strategy. Understand what Big Data is and what it can do Delve into Big Data's specific impact on the insurance industry Learn how advanced analytics can revolutionise the industry Bring Big Data out of IT and into strategy, management, marketing, and more Big Data and analytics is changing business – but how? The majority of Big Data guides discuss data collection, database administration, advanced analytics, and the power of Big Data – but what do you actually do with it? Big Data and Analytics for Insurers answers your questions in real, everyday business terms, tailored specifically to the insurance industry's unique needs, challenges, and targets.

The Digital Journey of Banking and Insurance, Volume III

The Digital Journey of Banking and Insurance, Volume III PDF Author: Volker Liermann
Publisher: Springer Nature
ISBN: 3030788210
Category : Business & Economics
Languages : en
Pages : 278

Book Description
This book, the third one of three volumes, focuses on data and the actions around data, like storage and processing. The angle shifts over the volumes from a business-driven approach in “Disruption and DNA” to a strong technical focus in “Data Storage, Processing and Analysis”, leaving “Digitalization and Machine Learning Applications” with the business and technical aspects in-between. In the last volume of the series, “Data Storage, Processing and Analysis”, the shifts in the way we deal with data are addressed.

Data Science and Risk Analytics in Finance and Insurance

Data Science and Risk Analytics in Finance and Insurance PDF Author: Tze Leung Lai
Publisher: CRC Press
ISBN: 1351643258
Category : Business & Economics
Languages : en
Pages : 1098

Book Description
This book presents statistics and data science methods for risk analytics in quantitative finance and insurance. Part I covers the background, financial models, and data analytical methods for market risk, credit risk, and operational risk in financial instruments, as well as models of risk premium and insolvency in insurance contracts. Part II provides an overview of machine learning (including supervised, unsupervised, and reinforcement learning), Monte Carlo simulation, and sequential analysis techniques for risk analytics. In Part III, the book offers a non-technical introduction to four key areas in financial technology: artificial intelligence, blockchain, cloud computing, and big data analytics. Key Features: Provides a comprehensive and in-depth overview of data science methods for financial and insurance risks. Unravels bandits, Markov decision processes, reinforcement learning, and their interconnections. Promotes sequential surveillance and predictive analytics for abrupt changes in risk factors. Introduces the ABCDs of FinTech: Artificial intelligence, blockchain, cloud computing, and big data analytics. Includes supplements and exercises to facilitate deeper comprehension.

The Economics of Artificial Intelligence

The Economics of Artificial Intelligence PDF Author: Ajay Agrawal
Publisher: University of Chicago Press
ISBN: 0226833127
Category : Business & Economics
Languages : en
Pages : 172

Book Description
A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.

Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare PDF Author: Adam Bohr
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385

Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data

Machine Learning for Financial Risk Management with Python

Machine Learning for Financial Risk Management with Python PDF Author: Abdullah Karasan
Publisher: "O'Reilly Media, Inc."
ISBN: 1492085200
Category : Computers
Languages : en
Pages : 334

Book Description
Financial risk management is quickly evolving with the help of artificial intelligence. With this practical book, developers, programmers, engineers, financial analysts, risk analysts, and quantitative and algorithmic analysts will examine Python-based machine learning and deep learning models for assessing financial risk. Building hands-on AI-based financial modeling skills, you'll learn how to replace traditional financial risk models with ML models. Author Abdullah Karasan helps you explore the theory behind financial risk modeling before diving into practical ways of employing ML models in modeling financial risk using Python. With this book, you will: Review classical time series applications and compare them with deep learning models Explore volatility modeling to measure degrees of risk, using support vector regression, neural networks, and deep learning Improve market risk models (VaR and ES) using ML techniques and including liquidity dimension Develop a credit risk analysis using clustering and Bayesian approaches Capture different aspects of liquidity risk with a Gaussian mixture model and Copula model Use machine learning models for fraud detection Predict stock price crash and identify its determinants using machine learning models