Fully Nonlinear Elliptic Equations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Fully Nonlinear Elliptic Equations PDF full book. Access full book title Fully Nonlinear Elliptic Equations by Luis A. Caffarelli. Download full books in PDF and EPUB format.

Fully Nonlinear Elliptic Equations

Fully Nonlinear Elliptic Equations PDF Author: Luis A. Caffarelli
Publisher: American Mathematical Soc.
ISBN: 0821804375
Category : Mathematics
Languages : en
Pages : 114

Book Description
The goal of the book is to extend classical regularity theorems for solutions of linear elliptic partial differential equations to the context of fully nonlinear elliptic equations. This class of equations often arises in control theory, optimization, and other applications. The authors give a detailed presentation of all the necessary techniques. Instead of treating these techniques in their greatest generality, they outline the key ideas and prove the results needed for developing the subsequent theory. Topics discussed in the book include the theory of viscosity solutions for nonlinear equations, the Alexandroff estimate and Krylov-Safonov Harnack-type inequality for viscosity solutions, uniqueness theory for viscosity solutions, Evans and Krylov regularity theory for convex fully nonlinear equations, and regularity theory for fully nonlinear equations with variable coefficients.

Fully Nonlinear Elliptic Equations

Fully Nonlinear Elliptic Equations PDF Author: Luis A. Caffarelli
Publisher: American Mathematical Soc.
ISBN: 0821804375
Category : Mathematics
Languages : en
Pages : 114

Book Description
The goal of the book is to extend classical regularity theorems for solutions of linear elliptic partial differential equations to the context of fully nonlinear elliptic equations. This class of equations often arises in control theory, optimization, and other applications. The authors give a detailed presentation of all the necessary techniques. Instead of treating these techniques in their greatest generality, they outline the key ideas and prove the results needed for developing the subsequent theory. Topics discussed in the book include the theory of viscosity solutions for nonlinear equations, the Alexandroff estimate and Krylov-Safonov Harnack-type inequality for viscosity solutions, uniqueness theory for viscosity solutions, Evans and Krylov regularity theory for convex fully nonlinear equations, and regularity theory for fully nonlinear equations with variable coefficients.

Elliptic Regularity Theory by Approximation Methods

Elliptic Regularity Theory by Approximation Methods PDF Author: Edgard A. Pimentel
Publisher: Cambridge University Press
ISBN: 1009096664
Category : Mathematics
Languages : en
Pages : 203

Book Description
A modern account of elliptic regularity theory, with a rigorous presentation of recent developments for fundamental models.

An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs

An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs PDF Author: Mariano Giaquinta
Publisher: Springer Science & Business Media
ISBN: 8876424431
Category : Mathematics
Languages : en
Pages : 373

Book Description
This volume deals with the regularity theory for elliptic systems. We may find the origin of such a theory in two of the problems posed by David Hilbert in his celebrated lecture delivered during the International Congress of Mathematicians in 1900 in Paris: 19th problem: Are the solutions to regular problems in the Calculus of Variations always necessarily analytic? 20th problem: does any variational problem have a solution, provided that certain assumptions regarding the given boundary conditions are satisfied, and provided that the notion of a solution is suitably extended? During the last century these two problems have generated a great deal of work, usually referred to as regularity theory, which makes this topic quite relevant in many fields and still very active for research. However, the purpose of this volume, addressed mainly to students, is much more limited. We aim to illustrate only some of the basic ideas and techniques introduced in this context, confining ourselves to important but simple situations and refraining from completeness. In fact some relevant topics are omitted. Topics include: harmonic functions, direct methods, Hilbert space methods and Sobolev spaces, energy estimates, Schauder and L^p-theory both with and without potential theory, including the Calderon-Zygmund theorem, Harnack's and De Giorgi-Moser-Nash theorems in the scalar case and partial regularity theorems in the vector valued case; energy minimizing harmonic maps and minimal graphs in codimension 1 and greater than 1. In this second deeply revised edition we also included the regularity of 2-dimensional weakly harmonic maps, the partial regularity of stationary harmonic maps, and their connections with the case p=1 of the L^p theory, including the celebrated results of Wente and of Coifman-Lions-Meyer-Semmes.

Functional Analytic Methods for Evolution Equations

Functional Analytic Methods for Evolution Equations PDF Author: Giuseppe Da Prato
Publisher: Springer
ISBN: 3540446532
Category : Mathematics
Languages : en
Pages : 478

Book Description
This book consists of five introductory contributions by leading mathematicians on the functional analytic treatment of evolutions equations. In particular the contributions deal with Markov semigroups, maximal L^p-regularity, optimal control problems for boundary and point control systems, parabolic moving boundary problems and parabolic nonautonomous evolution equations. The book is addressed to PhD students, young researchers and mathematicians doing research in one of the above topics.

The obstacle problem

The obstacle problem PDF Author: Luis Angel Caffarelli
Publisher: Edizioni della Normale
ISBN: 9788876422492
Category : Mathematics
Languages : en
Pages : 0

Book Description
The material presented here corresponds to Fermi lectures that I was invited to deliver at the Scuola Normale di Pisa in the spring of 1998. The obstacle problem consists in studying the properties of minimizers of the Dirichlet integral in a domain D of Rn, among all those configurations u with prescribed boundary values and costrained to remain in D above a prescribed obstacle F. In the Hilbert space H1(D) of all those functions with square integrable gradient, we consider the closed convex set K of functions u with fixed boundary value and which are greater than F in D. There is a unique point in K minimizing the Dirichlet integral. That is called the solution to the obstacle problem.

Degenerate Elliptic Equations

Degenerate Elliptic Equations PDF Author: Serge Levendorskii
Publisher: Springer Science & Business Media
ISBN: 9401712158
Category : Mathematics
Languages : en
Pages : 442

Book Description
This volume is the first to be devoted to the study of various properties of wide classes of degenerate elliptic operators of arbitrary order and pseudo-differential operators with multiple characteristics. Conditions for operators to be Fredholm in appropriate weighted Sobolev spaces are given, a priori estimates of solutions are derived, inequalities of the Grding type are proved, and the principal term of the spectral asymptotics for self-adjoint operators is computed. A generalization of the classical Weyl formula is proposed. Some results are new, even for operators of the second order. In addition, an analogue of the Boutet de Monvel calculus is developed and the index is computed. For postgraduate and research mathematicians, physicists and engineers whose work involves the solution of partial differential equations.

Regularity Techniques for Elliptic PDEs and the Fractional Laplacian

Regularity Techniques for Elliptic PDEs and the Fractional Laplacian PDF Author: Pablo Raúl Stinga
Publisher: CRC Press
ISBN: 1040041558
Category : Mathematics
Languages : en
Pages : 334

Book Description
Regularity Techniques for Elliptic PDEs and the Fractional Laplacian presents important analytic and geometric techniques to prove regularity estimates for solutions to second order elliptic equations, both in divergence and nondivergence form, and to nonlocal equations driven by the fractional Laplacian. The emphasis is placed on ideas and the development of intuition, while at the same time being completely rigorous. The reader should keep in mind that this text is about how analysis can be applied to regularity estimates. Many methods are nonlinear in nature, but the focus is on linear equations without lower order terms, thus avoiding bulky computations. The philosophy underpinning the book is that ideas must be flushed out in the cleanest and simplest ways, showing all the details and always maintaining rigor. Features Self-contained treatment of the topic Bridges the gap between upper undergraduate textbooks and advanced monographs to offer a useful, accessible reference for students and researchers. Replete with useful references.

An Introduction To Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Variations in L∞

An Introduction To Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Variations in L∞ PDF Author: Nikos Katzourakis
Publisher: Springer
ISBN: 3319128299
Category : Mathematics
Languages : en
Pages : 125

Book Description
The purpose of this book is to give a quick and elementary, yet rigorous, presentation of the rudiments of the so-called theory of Viscosity Solutions which applies to fully nonlinear 1st and 2nd order Partial Differential Equations (PDE). For such equations, particularly for 2nd order ones, solutions generally are non-smooth and standard approaches in order to define a "weak solution" do not apply: classical, strong almost everywhere, weak, measure-valued and distributional solutions either do not exist or may not even be defined. The main reason for the latter failure is that, the standard idea of using "integration-by-parts" in order to pass derivatives to smooth test functions by duality, is not available for non-divergence structure PDE.

Sobolev and Viscosity Solutions for Fully Nonlinear Elliptic and Parabolic Equations

Sobolev and Viscosity Solutions for Fully Nonlinear Elliptic and Parabolic Equations PDF Author: N. V. Krylov
Publisher: American Mathematical Soc.
ISBN: 1470447401
Category : Mathematics
Languages : en
Pages : 458

Book Description
This book concentrates on first boundary-value problems for fully nonlinear second-order uniformly elliptic and parabolic equations with discontinuous coefficients. We look for solutions in Sobolev classes, local or global, or for viscosity solutions. Most of the auxiliary results, such as Aleksandrov's elliptic and parabolic estimates, the Krylov–Safonov and the Evans–Krylov theorems, are taken from old sources, and the main results were obtained in the last few years. Presentation of these results is based on a generalization of the Fefferman–Stein theorem, on Fang-Hua Lin's like estimates, and on the so-called “ersatz” existence theorems, saying that one can slightly modify “any” equation and get a “cut-off” equation that has solutions with bounded derivatives. These theorems allow us to prove the solvability in Sobolev classes for equations that are quite far from the ones which are convex or concave with respect to the Hessians of the unknown functions. In studying viscosity solutions, these theorems also allow us to deal with classical approximating solutions, thus avoiding sometimes heavy constructions from the usual theory of viscosity solutions.

Nonlinear Elliptic Partial Differential Equations

Nonlinear Elliptic Partial Differential Equations PDF Author: Hervé Le Dret
Publisher: Springer
ISBN: 3319783904
Category : Mathematics
Languages : en
Pages : 259

Book Description
This textbook presents the essential parts of the modern theory of nonlinear partial differential equations, including the calculus of variations. After a short review of results in real and functional analysis, the author introduces the main mathematical techniques for solving both semilinear and quasilinear elliptic PDEs, and the associated boundary value problems. Key topics include infinite dimensional fixed point methods, the Galerkin method, the maximum principle, elliptic regularity, and the calculus of variations. Aimed at graduate students and researchers, this textbook contains numerous examples and exercises and provides several comments and suggestions for further study.