Localized Deformation as a Primary Cause of Irradiation Assisted Stress Corrosion Cracking

Localized Deformation as a Primary Cause of Irradiation Assisted Stress Corrosion Cracking PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The objective of this project is to determine whether deformation mode is a primary factor in the mechanism of irradiation assisted intergranular stress corrosion cracking of austenitic alloys in light watert reactor core components. Deformation mode will be controlled by both the stacking fault energy of the alloy and the degree of irradiation. In order to establish that localized deformation is a major factor in IASCC, the stacking fault energies of the alloys selected for study must be measured. Second, it is completely unknown how dose and SFE trade-off in terms of promoting localized deformation. Finally, it must be established that it is the localized deformation, and not some other factor that drives IASCC.

Irradiation-assisted Stress Corrosion Cracking of HTH Alloy X-750 and Alloy 625

Irradiation-assisted Stress Corrosion Cracking of HTH Alloy X-750 and Alloy 625 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
In-reactor testing of bolt-loaded compact tension specimens was performed in 360 C water. New data confirms previous results that high irradiation levels reduce SCC resistance in Alloy X-750. Low boron heats show improved IASCC (irradiation-assisted stress corrosion cracking). Alloy 625 is resistant to IASCC. Microstructural, microchemical, and deformation studies were carried out. Irradiation of X-750 caused significant strengthening and ductility loss associated with formation of cavities and dislocation loops. High irradiation did not cause segregation in X-750. Irradiation of 625 resulted in formation of small dislocation loops and a fine body-centered-orthorhombic phase. The strengthening due to loops and precipitates was apparently offset in 625 by partial dissolution of[gamma] precipitates. Transmutation of boron to helium at grain boundaries, coupled with matrix strengthening, is believed to be responsible for IASCC in X-750, and the absence of these two effects results in superior IASCC resistance in 625.

Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors

Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors PDF Author: Gabriell Ilevbare
Publisher: Springer
ISBN: 3319487604
Category : Technology & Engineering
Languages : en
Pages : 2354

Book Description
This 15th Edition of the International Conference on Materials Degradation in Light Water Reactors focuses on subject areas critical to the safe and efficient running of nuclear reactor systems through the exchange and discussion of reseach results as well as field operating and management experience.

Irradiation-assisted Stress Corrosion Cracking Considerations at Temperatures Below 288degreeC.

Irradiation-assisted Stress Corrosion Cracking Considerations at Temperatures Below 288degreeC. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Fundamentals of Radiation Materials Science

Fundamentals of Radiation Materials Science PDF Author: Gary S. Was
Publisher: Springer Science & Business Media
ISBN: 3540494723
Category : Technology & Engineering
Languages : en
Pages : 827

Book Description
This book is an eye-opening treatise on the fundamentals of the effects of radiation on metals and alloys. When energetic particles strike a solid, numerous processes occur that can change the physical and mechanical properties of the material. Metals and alloys represent an important class of materials that are subject to intense radiation fields. Radiation causes metals and alloys to swell, distort, blister, harden, soften and deform. This textbook and reference covers the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys.

Stress Corrosion Cracking of Pipelines

Stress Corrosion Cracking of Pipelines PDF Author: Y. Frank Cheng
Publisher: John Wiley & Sons
ISBN: 1118537084
Category : Science
Languages : en
Pages : 292

Book Description
Explains why pipeline stress corrosion cracking happens and how it can be prevented Pipelines sit at the heart of the global economy. When they are in good working order, they deliver fuel to meet the ever-growing demand for energy around the world. When they fail due to stress corrosion cracking, they can wreak environmental havoc. This book skillfully explains the fundamental science and engineering of pipeline stress corrosion cracking based on the latest research findings and actual case histories. The author explains how and why pipelines fall prey to stress corrosion cracking and then offers tested and proven strategies for preventing, detecting, and monitoring it in order to prevent pipeline failure. Stress Corrosion Cracking of Pipelines begins with a brief introduction and then explores general principals of stress corrosion cracking, including two detailed case studies of pipeline failure. Next, the author covers: Near-neutral pH stress corrosion cracking of pipelines High pH stress corrosion cracking of pipelines Stress corrosion cracking of pipelines in acidic soil environments Stress corrosion cracking at pipeline welds Stress corrosion cracking of high-strength pipeline steels The final chapter is dedicated to effective management and mitigation of pipeline stress corrosion cracking. Throughout the book, the author develops a number of theoretical models and concepts based on advanced microscopic electrochemical measurements to help readers better understand the occurrence of stress corrosion cracking. By examining all aspects of pipeline stress corrosion cracking—the causes, mechanisms, and management strategies—this book enables engineers to construct better pipelines and then maintain and monitor them to ensure safe, reliable energy supplies for the world.

Stress Corrosion Cracking

Stress Corrosion Cracking PDF Author: V S Raja
Publisher: Elsevier
ISBN: 0857093762
Category : Technology & Engineering
Languages : en
Pages : 817

Book Description
The problem of stress corrosion cracking (SCC), which causes sudden failure of metals and other materials subjected to stress in corrosive environment(s), has a significant impact on a number of sectors including the oil and gas industries and nuclear power production. Stress corrosion cracking reviews the fundamentals of the phenomenon as well as examining stress corrosion behaviour in specific materials and particular industries.The book is divided into four parts. Part one covers the mechanisms of SCC and hydrogen embrittlement, while the focus of part two is on methods of testing for SCC in metals. Chapters in part three each review the phenomenon with reference to a specific material, with a variety of metals, alloys and composites discussed, including steels, titanium alloys and polymer composites. In part four, the effect of SCC in various industries is examined, with chapters covering subjects such as aerospace engineering, nuclear reactors, utilities and pipelines.With its distinguished editors and international team of contributors, Stress corrosion cracking is an essential reference for engineers and designers working with metals, alloys and polymers, and will be an invaluable tool for any industries in which metallic components are exposed to tension, corrosive environments at ambient and high temperatures. - Examines the mechanisms of stress corrosion cracking (SCC) presenting recognising testing methods and materials resistant to SCC - Assesses the effect of SCC on particular metals featuring steel, stainless steel, nickel-based alloys, magnesium alloys, copper-based alloys and welds in steels - Reviews the monitoring and management of SCC and the affect of SCC in different industries such as petrochemical and aerospace

Shreir's Corrosion

Shreir's Corrosion PDF Author:
Publisher: Elsevier
ISBN: 0444527877
Category : Technology & Engineering
Languages : en
Pages : 3652

Book Description
This four-volume reference work builds upon the success of past editions of Elsevier’s Corrosion title (by Shreir, Jarman, and Burstein), covering the range of innovations and applications that have emerged in the years since its publication. Developed in partnership with experts from the Corrosion and Protection Centre at the University of Manchester, Shreir’s Corrosion meets the research and productivity needs of engineers, consultants, and researchers alike. Incorporates coverage of all aspects of the corrosion phenomenon, from the science behind corrosion of metallic and non-metallic materials in liquids and gases to the management of corrosion in specific industries and applications Features cutting-edge topics such as medical applications, metal matrix composites, and corrosion modeling Covers the benefits and limitations of techniques from scanning probes to electrochemical noise and impedance spectroscopy

Fundamentals of Radiation Materials Science

Fundamentals of Radiation Materials Science PDF Author: GARY S. WAS
Publisher: Springer
ISBN: 1493934384
Category : Technology & Engineering
Languages : en
Pages : 1014

Book Description
The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading and end-of-chapter problem sets. Aimed primarily at students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals. Reviews of the first edition: "...nomenclature, problems and separate bibliography at the end of each chapter allow to the reader to reach a straightforward understanding of the subject, part by part. ... this book is very pleasant to read, well documented and can be seen as a very good introduction to the effects of irradiation on matter, or as a good references compilation for experimented readers." - Pauly Nicolas, Physicalia Magazine, Vol. 30 (1), 2008 “The text provides enough fundamental material to explain the science and theory behind radiation effects in solids, but is also written at a high enough level to be useful for professional scientists. Its organization suits a graduate level materials or nuclear science course... the text was written by a noted expert and active researcher in the field of radiation effects in metals, the selection and organization of the material is excellent... may well become a necessary reference for graduate students and researchers in radiation materials science.” - L.M. Dougherty, 07/11/2008, JOM, the Member Journal of The Minerals, Metals and Materials Society.

Understanding Susceptibility of In-core Components to Irradiation-assisted Stress Corrosion Cracking

Understanding Susceptibility of In-core Components to Irradiation-assisted Stress Corrosion Cracking PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Book Description