Local And Global Aspects Of Quasilinear Degenerate Elliptic Equations: Quasilinear Elliptic Singular Problems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Local And Global Aspects Of Quasilinear Degenerate Elliptic Equations: Quasilinear Elliptic Singular Problems PDF full book. Access full book title Local And Global Aspects Of Quasilinear Degenerate Elliptic Equations: Quasilinear Elliptic Singular Problems by Laurent Veron. Download full books in PDF and EPUB format.

Local And Global Aspects Of Quasilinear Degenerate Elliptic Equations: Quasilinear Elliptic Singular Problems

Local And Global Aspects Of Quasilinear Degenerate Elliptic Equations: Quasilinear Elliptic Singular Problems PDF Author: Laurent Veron
Publisher: World Scientific
ISBN: 9814730343
Category : Mathematics
Languages : en
Pages : 474

Book Description
This book is devoted to the study of elliptic second-order degenerate quasilinear equations, the model of which is the p-Laplacian, with or without dominant lower order reaction term. Emphasis is put on three aspects:

Local And Global Aspects Of Quasilinear Degenerate Elliptic Equations: Quasilinear Elliptic Singular Problems

Local And Global Aspects Of Quasilinear Degenerate Elliptic Equations: Quasilinear Elliptic Singular Problems PDF Author: Laurent Veron
Publisher: World Scientific
ISBN: 9814730343
Category : Mathematics
Languages : en
Pages : 474

Book Description
This book is devoted to the study of elliptic second-order degenerate quasilinear equations, the model of which is the p-Laplacian, with or without dominant lower order reaction term. Emphasis is put on three aspects:

Local and Global Aspects of Quasilinear Degenerate Elliptic Equations

Local and Global Aspects of Quasilinear Degenerate Elliptic Equations PDF Author: Laurent Veron
Publisher: World Scientific Publishing Company
ISBN: 9789814730327
Category : Mathematics
Languages : en
Pages : 457

Book Description
This book is devoted to the study of elliptic second-order degenerate quasilinear equations, the model of which is the p-Laplacian, with or without dominant lower order reaction term. Emphasis is put on three aspects: The existence of separable singular solutions enables the description of isolated singularities of general solutions. The construction of singular solutions is delicate and cannot be done without the understanding of the spherical p-harmonic eigenvalue problem. When the equations are considered on a Riemannian manifold, existence or non-existence of solutions depends on geometric assumptions such as the curvature. A priori estimates and Liouville type problems are analyzed. When the equations are considered with a forcing term in the class of measures, their study is strongly linked to the properties of a class of potentials appearing in harmonic analysis such as the Riesz, the Bessel or the Wolff potentials and to their associated capacities. Necessary and sufficient conditions for existence of solutions link the continuity of the measure with respect to some appropriate capacity.

Stability Theory of Differential Equations

Stability Theory of Differential Equations PDF Author: Richard Bellman
Publisher: Courier Corporation
ISBN: 0486150135
Category : Mathematics
Languages : en
Pages : 178

Book Description
Suitable for advanced undergraduates and graduate students, this was the first English-language text to offer detailed coverage of boundedness, stability, and asymptotic behavior of linear and nonlinear differential equations. It remains a classic guide, featuring material from original research papers, including the author's own studies. The linear equation with constant and almost-constant coefficients receives in-depth attention that includes aspects of matrix theory. No previous acquaintance with the theory is necessary, since author Richard Bellman derives the results in matrix theory from the beginning. In regard to the stability of nonlinear systems, results of the linear theory are used to drive the results of Poincaré and Liapounoff. Professor Bellman then surveys important results concerning the boundedness, stability, and asymptotic behavior of second-order linear differential equations. The final chapters explore significant nonlinear differential equations whose solutions may be completely described in terms of asymptotic behavior. Only real solutions of real equations are considered, and the treatment emphasizes the behavior of these solutions as the independent variable increases without limit.

Fully Nonlinear Elliptic Equations

Fully Nonlinear Elliptic Equations PDF Author: Luis A. Caffarelli
Publisher: American Mathematical Soc.
ISBN: 0821804375
Category : Mathematics
Languages : en
Pages : 114

Book Description
The goal of the book is to extend classical regularity theorems for solutions of linear elliptic partial differential equations to the context of fully nonlinear elliptic equations. This class of equations often arises in control theory, optimization, and other applications. The authors give a detailed presentation of all the necessary techniques. Instead of treating these techniques in their greatest generality, they outline the key ideas and prove the results needed for developing the subsequent theory. Topics discussed in the book include the theory of viscosity solutions for nonlinear equations, the Alexandroff estimate and Krylov-Safonov Harnack-type inequality for viscosity solutions, uniqueness theory for viscosity solutions, Evans and Krylov regularity theory for convex fully nonlinear equations, and regularity theory for fully nonlinear equations with variable coefficients.

Geometric Analysis

Geometric Analysis PDF Author: Jingyi Chen
Publisher: Springer Nature
ISBN: 3030349535
Category : Mathematics
Languages : en
Pages : 615

Book Description
This edited volume has a two-fold purpose. First, comprehensive survey articles provide a way for beginners to ease into the corresponding sub-fields. These are then supplemented by original works that give the more advanced readers a glimpse of the current research in geometric analysis and related PDEs. The book is of significant interest for researchers, including advanced Ph.D. students, working in geometric analysis. Readers who have a secondary interest in geometric analysis will benefit from the survey articles. The results included in this book will stimulate further advances in the subjects: geometric analysis, including complex differential geometry, symplectic geometry, PDEs with a geometric origin, and geometry related to topology. Contributions by Claudio Arezzo, Alberto Della Vedova, Werner Ballmann, Henrik Matthiesen, Panagiotis Polymerakis, Sun-Yung A. Chang, Zheng-Chao Han, Paul Yang, Tobias Holck Colding, William P. Minicozzi II, Panagiotis Dimakis, Richard Melrose, Akito Futaki, Hajime Ono, Jiyuan Han, Jeff A. Viaclovsky, Bruce Kleiner, John Lott, Sławomir Kołodziej, Ngoc Cuong Nguyen, Chi Li, Yuchen Liu, Chenyang Xu, YanYan Li, Luc Nguyen, Bo Wang, Shiguang Ma, Jie Qing, Xiaonan Ma, Sean Timothy Paul, Kyriakos Sergiou, Tristan Rivière, Yanir A. Rubinstein, Natasa Sesum, Jian Song, Jeffrey Streets, Neil S. Trudinger, Yu Yuan, Weiping Zhang, Xiaohua Zhu and Aleksey Zinger.

Geometric and Functional Inequalities and Recent Topics in Nonlinear PDEs

Geometric and Functional Inequalities and Recent Topics in Nonlinear PDEs PDF Author: Emanuel Indrei
Publisher: American Mathematical Society
ISBN: 147046652X
Category : Mathematics
Languages : en
Pages : 148

Book Description
This volume contains the proceedings of the virtual conference on Geometric and Functional Inequalities and Recent Topics in Nonlinear PDEs, held from February 28–March 1, 2021, and hosted by Purdue University, West Lafayette, IN. The mathematical content of this volume is at the intersection of viscosity theory, Fourier analysis, mass transport theory, fractional elliptic theory, and geometric analysis. The reader will encounter, among others, the following topics: the principal-agent problem; Maxwell's equations; Liouville-type theorems for fully nonlinear elliptic equations; a doubly monotone flow for constant width bodies; and the edge dislocations problem for crystals that describes the equilibrium configurations by a nonlocal fractional Laplacian equation.

Elliptic and Parabolic Equations

Elliptic and Parabolic Equations PDF Author: Joachim Escher
Publisher: Springer
ISBN: 3319125478
Category : Mathematics
Languages : en
Pages : 295

Book Description
The international workshop on which this proceedings volume is based on brought together leading researchers in the field of elliptic and parabolic equations. Particular emphasis was put on the interaction between well-established scientists and emerging young mathematicians, as well as on exploring new connections between pure and applied mathematics. The volume contains material derived after the workshop taking up the impetus to continue collaboration and to incorporate additional new results and insights.

Holder Continuity of Weak Solutions to Subelliptic Equations with Rough Coefficients

Holder Continuity of Weak Solutions to Subelliptic Equations with Rough Coefficients PDF Author: Eric T. Sawyer
Publisher: American Mathematical Soc.
ISBN: 0821838261
Category : Mathematics
Languages : en
Pages : 176

Book Description
This mathematical monograph is a study of interior regularity of weak solutions of second order linear divergence form equations with degenerate ellipticity and rough coefficients. The authors show that solutions of large classes of subelliptic equations with bounded measurable coefficients are H lder continuous. They present two types of results f

Nonlinear Differential Problems with Smooth and Nonsmooth Constraints

Nonlinear Differential Problems with Smooth and Nonsmooth Constraints PDF Author: Dumitru Motreanu
Publisher: Academic Press
ISBN: 0128133937
Category : Mathematics
Languages : en
Pages : 364

Book Description
Nonlinear Differential Problems with Smooth and Nonsmooth Constraints systematically evaluates how to solve boundary value problems with smooth and nonsmooth constraints. Primarily covering nonlinear elliptic eigenvalue problems and quasilinear elliptic problems using techniques amalgamated from a range of sophisticated nonlinear analysis domains, the work is suitable for PhD and other early career researchers seeking solutions to nonlinear differential equations. Although an advanced work, the book is self-contained, requiring only graduate-level knowledge of functional analysis and topology. Whenever suitable, open problems are stated and partial solutions proposed. The work is accompanied by end-of-chapter problems and carefully curated references. - Builds from functional analysis and operator theory, to nonlinear elliptic systems and control problems - Outlines the evolution of the main ideas of nonlinear analysis and their roots in classical mathematics - Presented with numerous end-of-chapter exercises and sophisticated open problems - Illustrated with pertinent industrial and engineering numerical examples and applications - Accompanied by hundreds of curated references, saving readers hours of research in conducting literature analysis

Elliptic & Parabolic Equations

Elliptic & Parabolic Equations PDF Author: Zhuoqun Wu
Publisher: World Scientific
ISBN: 9812700250
Category : Mathematics
Languages : en
Pages : 428

Book Description
This book provides an introduction to elliptic and parabolic equations. While there are numerous monographs focusing separately on each kind of equations, there are very few books treating these two kinds of equations in combination. This book presents the related basic theories and methods to enable readers to appreciate the commonalities between these two kinds of equations as well as contrast the similarities and differences between them.