Linear and Nonlinear Model Order Reduction for Numerical Simulation of Electric Circuits PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Linear and Nonlinear Model Order Reduction for Numerical Simulation of Electric Circuits PDF full book. Access full book title Linear and Nonlinear Model Order Reduction for Numerical Simulation of Electric Circuits by Kasra Mohaghegh. Download full books in PDF and EPUB format.

Linear and Nonlinear Model Order Reduction for Numerical Simulation of Electric Circuits

Linear and Nonlinear Model Order Reduction for Numerical Simulation of Electric Circuits PDF Author: Kasra Mohaghegh
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832527117
Category : Mathematics
Languages : en
Pages : 106

Book Description
Increasing complexity combined with decreasing geometrical sizes in electric circuit design lead to high dimensional dynamical models to be considered by EDA tools. Model order reduction (MOR) has become a popular strategy to decrease the problem's size while preserving its crucial properties. MOR shall achieve accurate statements on a circuit's behavior within an affordable amount of computational time. Just recently, MOR techniques are designed to consider the differential algebraic nature of the underlying models. We present an approach based on an e-embedding, i.e., a strategy applied in the construction of numerical integration schemes for differential algebraic equations (DAEs). The system of DAEs is transformed into an artificial system of ordinary differential equations (ODEs), since MOR schemes for ODEs can be applied now. We construct, analyze and test different strategies with respect to the usage of the parameter e that transforms the DAEs into ODEs. Moreover, accurate mathematical models for MOS-devices introduce highly nonlinear equations. As the packing density of devices is growing in circuit design, huge nonlinear systems appear in practice. It follows an increasing demand for reduced order modeling of nonlinear problems. In the thesis, we also review the status of existing techniques for nonlinear MOR by investigating the performance of the schemes applied in circuit simulation.

Linear and Nonlinear Model Order Reduction for Numerical Simulation of Electric Circuits

Linear and Nonlinear Model Order Reduction for Numerical Simulation of Electric Circuits PDF Author: Kasra Mohaghegh
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832527117
Category : Mathematics
Languages : en
Pages : 106

Book Description
Increasing complexity combined with decreasing geometrical sizes in electric circuit design lead to high dimensional dynamical models to be considered by EDA tools. Model order reduction (MOR) has become a popular strategy to decrease the problem's size while preserving its crucial properties. MOR shall achieve accurate statements on a circuit's behavior within an affordable amount of computational time. Just recently, MOR techniques are designed to consider the differential algebraic nature of the underlying models. We present an approach based on an e-embedding, i.e., a strategy applied in the construction of numerical integration schemes for differential algebraic equations (DAEs). The system of DAEs is transformed into an artificial system of ordinary differential equations (ODEs), since MOR schemes for ODEs can be applied now. We construct, analyze and test different strategies with respect to the usage of the parameter e that transforms the DAEs into ODEs. Moreover, accurate mathematical models for MOS-devices introduce highly nonlinear equations. As the packing density of devices is growing in circuit design, huge nonlinear systems appear in practice. It follows an increasing demand for reduced order modeling of nonlinear problems. In the thesis, we also review the status of existing techniques for nonlinear MOR by investigating the performance of the schemes applied in circuit simulation.

Coupled Multiscale Simulation and Optimization in Nanoelectronics

Coupled Multiscale Simulation and Optimization in Nanoelectronics PDF Author: Michael Günther
Publisher: Springer
ISBN: 3662466724
Category : Computers
Languages : en
Pages : 574

Book Description
Designing complex integrated circuits relies heavily on mathematical methods and calls for suitable simulation and optimization tools. The current design approach involves simulations and optimizations in different physical domains (device, circuit, thermal, electromagnetic) and in a range of electrical engineering disciplines (logic, timing, power, crosstalk, signal integrity, system functionality). COMSON was a Marie Curie Research Training Network created to meet these new scientific and training challenges by (a) developing new descriptive models that take these mutual dependencies into account, (b) combining these models with existing circuit descriptions in new simulation strategies and (c) developing new optimization techniques that will accommodate new designs. The book presents the main project results in the fields of PDAE modeling and simulation, model order reduction techniques and optimization, based on merging the know-how of three major European semiconductor companies with the combined expertise of university groups specialized in developing suitable mathematical models, numerical schemes and e-learning facilities. In addition, a common Demonstrator Platform for testing mathematical methods and approaches was created to assess whether they are capable of addressing the industry’s problems, and to educate young researchers by providing hands-on experience with state-of-the-art problems.

Interpolatory Methods for Model Reduction

Interpolatory Methods for Model Reduction PDF Author: A. C. Antoulas
Publisher: SIAM
ISBN: 1611976081
Category : Mathematics
Languages : en
Pages : 245

Book Description
Dynamical systems are a principal tool in the modeling, prediction, and control of a wide range of complex phenomena. As the need for improved accuracy leads to larger and more complex dynamical systems, direct simulation often becomes the only available strategy for accurate prediction or control, inevitably creating a considerable burden on computational resources. This is the main context where one considers model reduction, seeking to replace large systems of coupled differential and algebraic equations that constitute high fidelity system models with substantially fewer equations that are crafted to control the loss of fidelity that order reduction may induce in the system response. Interpolatory methods are among the most widely used model reduction techniques, and Interpolatory Methods for Model Reduction is the first comprehensive analysis of this approach available in a single, extensive resource. It introduces state-of-the-art methods reflecting significant developments over the past two decades, covering both classical projection frameworks for model reduction and data-driven, nonintrusive frameworks. This textbook is appropriate for a wide audience of engineers and other scientists working in the general areas of large-scale dynamical systems and data-driven modeling of dynamics.

Model Order Reduction: Theory, Research Aspects and Applications

Model Order Reduction: Theory, Research Aspects and Applications PDF Author: Wilhelmus H. Schilders
Publisher: Springer Science & Business Media
ISBN: 3540788417
Category : Mathematics
Languages : en
Pages : 471

Book Description
The idea for this book originated during the workshop “Model order reduction, coupled problems and optimization” held at the Lorentz Center in Leiden from S- tember 19–23, 2005. During one of the discussion sessions, it became clear that a book describing the state of the art in model order reduction, starting from the very basics and containing an overview of all relevant techniques, would be of great use for students, young researchers starting in the ?eld, and experienced researchers. The observation that most of the theory on model order reduction is scattered over many good papers, making it dif?cult to ?nd a good starting point, was supported by most of the participants. Moreover, most of the speakers at the workshop were willing to contribute to the book that is now in front of you. The goal of this book, as de?ned during the discussion sessions at the workshop, is three-fold: ?rst, it should describe the basics of model order reduction. Second, both general and more specialized model order reduction techniques for linear and nonlinear systems should be covered, including the use of several related numerical techniques. Third, the use of model order reduction techniques in practical appli- tions and current research aspects should be discussed. We have organized the book according to these goals. In Part I, the rationale behind model order reduction is explained, and an overview of the most common methods is described.

Model Reduction for Circuit Simulation

Model Reduction for Circuit Simulation PDF Author: Peter Benner
Publisher: Springer Science & Business Media
ISBN: 940070089X
Category : Technology & Engineering
Languages : en
Pages : 317

Book Description
Simulation based on mathematical models plays a major role in computer aided design of integrated circuits (ICs). Decreasing structure sizes, increasing packing densities and driving frequencies require the use of refined mathematical models, and to take into account secondary, parasitic effects. This leads to very high dimensional problems which nowadays require simulation times too large for the short time-to-market demands in industry. Modern Model Order Reduction (MOR) techniques present a way out of this dilemma in providing surrogate models which keep the main characteristics of the device while requiring a significantly lower simulation time than the full model. With Model Reduction for Circuit Simulation we survey the state of the art in the challenging research field of MOR for ICs, and also address its future research directions. Special emphasis is taken on aspects stemming from miniturisations to the nano scale. Contributions cover complexity reduction using e.g., balanced truncation, Krylov-techniques or POD approaches. For semiconductor applications a focus is on generalising current techniques to differential-algebraic equations, on including design parameters, on preserving stability, and on including nonlinearity by means of piecewise linearisations along solution trajectories (TPWL) and interpolation techniques for nonlinear parts. Furthermore the influence of interconnects and power grids on the physical properties of the device is considered, and also top-down system design approaches in which detailed block descriptions are combined with behavioral models. Further topics consider MOR and the combination of approaches from optimisation and statistics, and the inclusion of PDE models with emphasis on MOR for the resulting partial differential algebraic systems. The methods which currently are being developed have also relevance in other application areas such as mechanical multibody systems, and systems arising in chemistry and to biology. The current number of books in the area of MOR for ICs is very limited, so that this volume helps to fill a gap in providing the state of the art material, and to stimulate further research in this area of MOR. Model Reduction for Circuit Simulation also reflects and documents the vivid interaction between three active research projects in this area, namely the EU-Marie Curie Action ToK project O-MOORE-NICE (members in Belgium, The Netherlands and Germany), the EU-Marie Curie Action RTN-project COMSON (members in The Netherlands, Italy, Germany, and Romania), and the German federal project System reduction in nano-electronics (SyreNe).

System Reduction for Nanoscale IC Design

System Reduction for Nanoscale IC Design PDF Author: Peter Benner
Publisher: Springer
ISBN: 3319072366
Category : Computers
Languages : en
Pages : 205

Book Description
This book describes the computational challenges posed by the progression toward nanoscale electronic devices and increasingly short design cycles in the microelectronics industry, and proposes methods of model reduction which facilitate circuit and device simulation for specific tasks in the design cycle. The goal is to develop and compare methods for system reduction in the design of high dimensional nanoelectronic ICs, and to test these methods in the practice of semiconductor development. Six chapters describe the challenges for numerical simulation of nanoelectronic circuits and suggest model reduction methods for constituting equations. These include linear and nonlinear differential equations tailored to circuit equations and drift diffusion equations for semiconductor devices. The performance of these methods is illustrated with numerical experiments using real-world data. Readers will benefit from an up-to-date overview of the latest model reduction methods in computational nanoelectronics.

Scientific Computing in Electrical Engineering

Scientific Computing in Electrical Engineering PDF Author: Ulrich Langer
Publisher: Springer
ISBN: 3319755382
Category : Mathematics
Languages : en
Pages : 271

Book Description
This collection of selected papers presented at the 11th International Conference on Scientific Computing in Electrical Engineering (SCEE), held in St. Wolfgang, Austria, in 2016, showcases the state of the art in SCEE. The aim of the SCEE 2016 conference was to bring together scientists from academia and industry, mathematicians, electrical engineers, computer scientists, and physicists, and to promote intensive discussions on industrially relevant mathematical problems, with an emphasis on the modeling and numerical simulation of electronic circuits and devices, electromagnetic fields, and coupled problems. The focus in methodology was on model order reduction and uncertainty quantification. This extensive reference work is divided into six parts: Computational Electromagnetics, Circuit and Device Modeling and Simulation, Coupled Problems and Multi‐Scale Approaches in Space and Time, Mathematical and Computational Methods Including Uncertainty Quantification, Model Order Reduction, and Industrial Applications. Each part starts with a general introduction, followed by the respective contributions. This book will appeal to mathematicians and electrical engineers. Further, it introduces algorithm and program developers to recent advances in the other fields, while industry experts will be introduced to new programming tools and mathematical methods.

Progress in Industrial Mathematics at ECMI 2008

Progress in Industrial Mathematics at ECMI 2008 PDF Author: Alistair D. Fitt
Publisher: Springer Science & Business Media
ISBN: 3642121101
Category : Mathematics
Languages : en
Pages : 1060

Book Description
The 15th European Conference on Mathematics for Industry was held in the agreeable surroundings of University College London, just 5 minutes walk from the British Museum in the heart of London, over the ?ve warm, sunny days from 30 June to 4 July 2008. Participants from all over the world met with the commonaimofreinforcingthe roleofmathematics asanoverarching resource for industry and business. The conference attracted over 300 participants from 30 countries, most of them participating with either a contributed talk, a minisymposium pres- tation or a plenary lecture. ‘Mathematics in Industry’ was interpreted in its widest sense as can be seen from the range of applications and techniques described in this volume. We mention just two examples. The Alan Tayler Lecture was given by Mario Primicerio on a problem arising from moving oil through pipelines when temperature variations a?ect the shearing properties of wax and thus modify the ?ow. The Wacker Prize winner, Master’s student Lauri Harhanen from the Helsinki University of Technology, showed how a novel piece of mathematics allowed new software to capture real-time images of teeth from the data supplied by present day dental machinery (see ECMI Newsletter 44). The meeting was attended by leading ?gures from government, bu- ness and science who all shared the same aim – to promote the application of innovative mathematics to industry, and identify industrial sectors that o?er the most exciting opportunities for mathematicians to provide new insight and new ideas.

Scientific Computing in Electrical Engineering

Scientific Computing in Electrical Engineering PDF Author: G. Ciuprina
Publisher: Springer Science & Business Media
ISBN: 3540719806
Category : Computers
Languages : en
Pages : 464

Book Description
This book is a collection of selected papers presented at the last Scientific Computing in Electrical Engineering (SCEE) Conference, held in Sinaia, Romania, in 2006. The series of SCEE conferences aims at addressing mathematical problems which have a relevance to industry, with an emphasis on modeling and numerical simulation of electronic circuits, electromagnetic fields but also coupled problems and general mathematical and computational methods.

Progress in Industrial Mathematics at ECMI 2014

Progress in Industrial Mathematics at ECMI 2014 PDF Author: Giovanni Russo
Publisher: Springer
ISBN: 3319234137
Category : Computers
Languages : en
Pages : 1139

Book Description
This book presents a collection of papers emphasizing applications of mathematical models and methods to real-world problems of relevance for industry, life science, environment, finance and so on. The biannual Conference of ECMI (the European Consortium of Mathematics in Industry) held in 2014 focused on various aspects of industrial and applied mathematics. The five main topics addressed at the conference were mathematical models in life science, material science and semiconductors, mathematical methods in the environment, design automation and industrial applications, and computational finance. Several other topics have been treated, such as, among others, optimization and inverse problems, education, numerical methods for stiff pdes, model reduction, imaging processing, multi physics simulation, mathematical models in textile industry. The conference, which brought together applied mathematicians and experts from industry, provided a unique opportunity to exchange ideas, problems and methodologies, bridging the gap between mathematics and industry and contributing to the advancement of science and technology. The conference has included a presentation of EU-Maths-In (European Network of Mathematics for Industry and Innovation), a recent joint initiative of ECMI and EMS. The proceedings from this conference represent a snapshot of the current activity in industrial mathematics in Europe, and are highly relevant to anybody interested in the latest applications of mathematics to industrial problems.