Lévy Processes and Stochastic Calculus PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Lévy Processes and Stochastic Calculus PDF full book. Access full book title Lévy Processes and Stochastic Calculus by David Applebaum. Download full books in PDF and EPUB format.

Lévy Processes and Stochastic Calculus

Lévy Processes and Stochastic Calculus PDF Author: David Applebaum
Publisher: Cambridge University Press
ISBN: 9780521832632
Category : Mathematics
Languages : en
Pages : 440

Book Description
Publisher Description

Lévy Processes and Stochastic Calculus

Lévy Processes and Stochastic Calculus PDF Author: David Applebaum
Publisher: Cambridge University Press
ISBN: 9780521832632
Category : Mathematics
Languages : en
Pages : 440

Book Description
Publisher Description

Quantum Independent Increment Processes II

Quantum Independent Increment Processes II PDF Author: Ole E. Barndorff-Nielsen
Publisher: Springer Science & Business Media
ISBN: 9783540244073
Category : Distribution
Languages : en
Pages : 364

Book Description
Lectures given at the school "Quantum Independent Increment Processes: Structure and Applications to Physics" held at the Alfried-Krupp-Wissenschaftskolleg in Greifswald in March 9-22, 2003.

Recent Developments In Stochastic Analysis And Related Topics - Proceedings Of The First Sino-german Conf On Stochastic Analysis (A Satellite Conference Of Icm 2002)

Recent Developments In Stochastic Analysis And Related Topics - Proceedings Of The First Sino-german Conf On Stochastic Analysis (A Satellite Conference Of Icm 2002) PDF Author: Sergio Albeverio
Publisher: World Scientific
ISBN: 9814481327
Category : Mathematics
Languages : en
Pages : 471

Book Description
This volume contains 27 refereed research articles and survey papers written by experts in the field of stochastic analysis and related topics. Most contributors are well known leading mathematicians worldwide and prominent young scientists. The volume reflects a review of the recent developments in stochastic analysis and related topics. It puts in evidence the strong interconnection of stochastic analysis with other areas of mathematics, as well as with applications of mathematics in natural and social economic sciences. The volume also provides some possible future directions for the field.The proceedings have been selected for coverage in:• Index to Scientific & Technical Proceedings® (ISTP® / ISI Proceedings)• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)• CC Proceedings — Engineering & Physical Sciences

Itô’s Stochastic Calculus and Probability Theory

Itô’s Stochastic Calculus and Probability Theory PDF Author: Nobuyuki Ikeda
Publisher: Springer Science & Business Media
ISBN: 4431685324
Category : Mathematics
Languages : en
Pages : 425

Book Description
Professor Kiyosi Ito is well known as the creator of the modern theory of stochastic analysis. Although Ito first proposed his theory, now known as Ito's stochastic analysis or Ito's stochastic calculus, about fifty years ago, its value in both pure and applied mathematics is becoming greater and greater. For almost all modern theories at the forefront of probability and related fields, Ito's analysis is indispensable as an essential instrument, and it will remain so in the future. For example, a basic formula, called the Ito formula, is well known and widely used in fields as diverse as physics and economics. This volume contains 27 papers written by world-renowned probability theorists. Their subjects vary widely and they present new results and ideas in the fields where stochastic analysis plays an important role. Also included are several expository articles by well-known experts surveying recent developments. Not only mathematicians but also physicists, biologists, economists and researchers in other fields who are interested in the effectiveness of stochastic theory will find valuable suggestions for their research. In addition, students who are beginning their study and research in stochastic analysis and related fields will find instructive and useful guidance here. This volume is dedicated to Professor Ito on the occasion of his eightieth birthday as a token of deep appreciation for his great achievements and contributions. An introduction to and commentary on the scientific works of Professor Ito are also included.

Introduction to Stochastic Finance

Introduction to Stochastic Finance PDF Author: Jia-An Yan
Publisher: Springer
ISBN: 9811316570
Category : Mathematics
Languages : en
Pages : 406

Book Description
This book gives a systematic introduction to the basic theory of financial mathematics, with an emphasis on applications of martingale methods in pricing and hedging of contingent claims, interest rate term structure models, and expected utility maximization problems. The general theory of static risk measures, basic concepts and results on markets of semimartingale model, and a numeraire-free and original probability based framework for financial markets are also included. The basic theory of probability and Ito's theory of stochastic analysis, as preliminary knowledge, are presented.

New Trends in Stochastic Analysis and Related Topics

New Trends in Stochastic Analysis and Related Topics PDF Author: Huaizhong Zhao
Publisher: World Scientific
ISBN: 9814360910
Category : Mathematics
Languages : en
Pages : 458

Book Description
The volume is dedicated to Professor David Elworthy to celebrate his fundamental contribution and exceptional influence on stochastic analysis and related fields. Stochastic analysis has been profoundly developed as a vital fundamental research area in mathematics in recent decades. It has been discovered to have intrinsic connections with many other areas of mathematics such as partial differential equations, functional analysis, topology, differential geometry, dynamical systems, etc. Mathematicians developed many mathematical tools in stochastic analysis to understand and model random phenomena in physics, biology, finance, fluid, environment science, etc. This volume contains 12 comprehensive review/new articles written by world leading researchers (by invitation) and their collaborators. It covers stochastic analysis on manifolds, rough paths, Dirichlet forms, stochastic partial differential equations, stochastic dynamical systems, infinite dimensional analysis, stochastic flows, quantum stochastic analysis and stochastic Hamilton Jacobi theory. Articles contain cutting edge research methodology, results and ideas in relevant fields. They are of interest to research mathematicians and postgraduate students in stochastic analysis, probability, partial differential equations, dynamical systems, mathematical physics, as well as to physicists, financial mathematicians, engineers, etc.

A Course on Rough Paths

A Course on Rough Paths PDF Author: Peter K. Friz
Publisher: Springer Nature
ISBN: 3030415562
Category : Mathematics
Languages : en
Pages : 354

Book Description
With many updates and additional exercises, the second edition of this book continues to provide readers with a gentle introduction to rough path analysis and regularity structures, theories that have yielded many new insights into the analysis of stochastic differential equations, and, most recently, stochastic partial differential equations. Rough path analysis provides the means for constructing a pathwise solution theory for stochastic differential equations which, in many respects, behaves like the theory of deterministic differential equations and permits a clean break between analytical and probabilistic arguments. Together with the theory of regularity structures, it forms a robust toolbox, allowing the recovery of many classical results without having to rely on specific probabilistic properties such as adaptedness or the martingale property. Essentially self-contained, this textbook puts the emphasis on ideas and short arguments, rather than aiming for the strongest possible statements. A typical reader will have been exposed to upper undergraduate analysis and probability courses, with little more than Itô-integration against Brownian motion required for most of the text. From the reviews of the first edition: "Can easily be used as a support for a graduate course ... Presents in an accessible way the unique point of view of two experts who themselves have largely contributed to the theory" - Fabrice Baudouin in the Mathematical Reviews "It is easy to base a graduate course on rough paths on this ... A researcher who carefully works her way through all of the exercises will have a very good impression of the current state of the art" - Nicolas Perkowski in Zentralblatt MATH

Random Processes for Engineers

Random Processes for Engineers PDF Author: Bruce Hajek
Publisher: Cambridge University Press
ISBN: 1316241246
Category : Technology & Engineering
Languages : en
Pages : 429

Book Description
This engaging introduction to random processes provides students with the critical tools needed to design and evaluate engineering systems that must operate reliably in uncertain environments. A brief review of probability theory and real analysis of deterministic functions sets the stage for understanding random processes, whilst the underlying measure theoretic notions are explained in an intuitive, straightforward style. Students will learn to manage the complexity of randomness through the use of simple classes of random processes, statistical means and correlations, asymptotic analysis, sampling, and effective algorithms. Key topics covered include: • Calculus of random processes in linear systems • Kalman and Wiener filtering • Hidden Markov models for statistical inference • The estimation maximization (EM) algorithm • An introduction to martingales and concentration inequalities. Understanding of the key concepts is reinforced through over 100 worked examples and 300 thoroughly tested homework problems (half of which are solved in detail at the end of the book).

Handbook of Brownian Motion - Facts and Formulae

Handbook of Brownian Motion - Facts and Formulae PDF Author: Andrei N. Borodin
Publisher: Springer Science & Business Media
ISBN: 9783764367053
Category : Mathematics
Languages : en
Pages : 710

Book Description
Here is easy reference to a wealth of facts and formulae associated with Brownian motion, collecting in one volume more than 2500 numbered formulae. The book serves as a basic reference for researchers, graduate students, and people doing applied work with Brownian motion and diffusions, and can be used as a source of explicit examples when teaching stochastic processes.

Tychastic Measure of Viability Risk

Tychastic Measure of Viability Risk PDF Author: Jean-Pierre Aubin
Publisher: Springer
ISBN: 3319081292
Category : Mathematics
Languages : en
Pages : 136

Book Description
This book presents a forecasting mechanism of the price intervals for deriving the SCR (solvency capital requirement) eradicating the risk during the exercise period on one hand and measuring the risk by computing the hedging exit time function associating with smaller investments the date until which the value of the portfolio hedges the liabilities on the other. This information, summarized under the term “tychastic viability measure of risk” is an evolutionary alternative to statistical measures, when dealing with evolutions under uncertainty. The book is written by experts in the field and the target audience primarily comprises research experts and practitioners.