Author: Izu Vaisman
Publisher: Birkhäuser
ISBN: 3034884958
Category : Mathematics
Languages : en
Pages : 210
Book Description
This book is addressed to graduate students and researchers in the fields of mathematics and physics who are interested in mathematical and theoretical physics, differential geometry, mechanics, quantization theories and quantum physics, quantum groups etc., and who are familiar with differentiable and symplectic manifolds. The aim of the book is to provide the reader with a monograph that enables him to study systematically basic and advanced material on the recently developed theory of Poisson manifolds, and that also offers ready access to bibliographical references for the continuation of his study. Until now, most of this material was dispersed in research papers published in many journals and languages. The main subjects treated are the Schouten-Nijenhuis bracket; the generalized Frobenius theorem; the basics of Poisson manifolds; Poisson calculus and cohomology; quantization; Poisson morphisms and reduction; realizations of Poisson manifolds by symplectic manifolds and by symplectic groupoids and Poisson-Lie groups. The book unifies terminology and notation. It also reports on some original developments stemming from the author's work, including new results on Poisson cohomology and geometric quantization, cofoliations and biinvariant Poisson structures on Lie groups.
Lectures on the Geometry of Poisson Manifolds
Author: Izu Vaisman
Publisher: Birkhäuser
ISBN: 3034884958
Category : Mathematics
Languages : en
Pages : 210
Book Description
This book is addressed to graduate students and researchers in the fields of mathematics and physics who are interested in mathematical and theoretical physics, differential geometry, mechanics, quantization theories and quantum physics, quantum groups etc., and who are familiar with differentiable and symplectic manifolds. The aim of the book is to provide the reader with a monograph that enables him to study systematically basic and advanced material on the recently developed theory of Poisson manifolds, and that also offers ready access to bibliographical references for the continuation of his study. Until now, most of this material was dispersed in research papers published in many journals and languages. The main subjects treated are the Schouten-Nijenhuis bracket; the generalized Frobenius theorem; the basics of Poisson manifolds; Poisson calculus and cohomology; quantization; Poisson morphisms and reduction; realizations of Poisson manifolds by symplectic manifolds and by symplectic groupoids and Poisson-Lie groups. The book unifies terminology and notation. It also reports on some original developments stemming from the author's work, including new results on Poisson cohomology and geometric quantization, cofoliations and biinvariant Poisson structures on Lie groups.
Publisher: Birkhäuser
ISBN: 3034884958
Category : Mathematics
Languages : en
Pages : 210
Book Description
This book is addressed to graduate students and researchers in the fields of mathematics and physics who are interested in mathematical and theoretical physics, differential geometry, mechanics, quantization theories and quantum physics, quantum groups etc., and who are familiar with differentiable and symplectic manifolds. The aim of the book is to provide the reader with a monograph that enables him to study systematically basic and advanced material on the recently developed theory of Poisson manifolds, and that also offers ready access to bibliographical references for the continuation of his study. Until now, most of this material was dispersed in research papers published in many journals and languages. The main subjects treated are the Schouten-Nijenhuis bracket; the generalized Frobenius theorem; the basics of Poisson manifolds; Poisson calculus and cohomology; quantization; Poisson morphisms and reduction; realizations of Poisson manifolds by symplectic manifolds and by symplectic groupoids and Poisson-Lie groups. The book unifies terminology and notation. It also reports on some original developments stemming from the author's work, including new results on Poisson cohomology and geometric quantization, cofoliations and biinvariant Poisson structures on Lie groups.
Lectures on Poisson Geometry
Author: Marius Crainic
Publisher: American Mathematical Soc.
ISBN: 1470466678
Category : Education
Languages : en
Pages : 479
Book Description
This excellent book will be very useful for students and researchers wishing to learn the basics of Poisson geometry, as well as for those who know something about the subject but wish to update and deepen their knowledge. The authors' philosophy that Poisson geometry is an amalgam of foliation theory, symplectic geometry, and Lie theory enables them to organize the book in a very coherent way. —Alan Weinstein, University of California at Berkeley This well-written book is an excellent starting point for students and researchers who want to learn about the basics of Poisson geometry. The topics covered are fundamental to the theory and avoid any drift into specialized questions; they are illustrated through a large collection of instructive and interesting exercises. The book is ideal as a graduate textbook on the subject, but also for self-study. —Eckhard Meinrenken, University of Toronto
Publisher: American Mathematical Soc.
ISBN: 1470466678
Category : Education
Languages : en
Pages : 479
Book Description
This excellent book will be very useful for students and researchers wishing to learn the basics of Poisson geometry, as well as for those who know something about the subject but wish to update and deepen their knowledge. The authors' philosophy that Poisson geometry is an amalgam of foliation theory, symplectic geometry, and Lie theory enables them to organize the book in a very coherent way. —Alan Weinstein, University of California at Berkeley This well-written book is an excellent starting point for students and researchers who want to learn about the basics of Poisson geometry. The topics covered are fundamental to the theory and avoid any drift into specialized questions; they are illustrated through a large collection of instructive and interesting exercises. The book is ideal as a graduate textbook on the subject, but also for self-study. —Eckhard Meinrenken, University of Toronto
Lectures on Symplectic Geometry
Author: Ana Cannas da Silva
Publisher: Springer
ISBN: 354045330X
Category : Mathematics
Languages : en
Pages : 240
Book Description
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
Publisher: Springer
ISBN: 354045330X
Category : Mathematics
Languages : en
Pages : 240
Book Description
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
Poisson Structures
Author: Camille Laurent-Gengoux
Publisher: Springer Science & Business Media
ISBN: 3642310907
Category : Mathematics
Languages : en
Pages : 470
Book Description
Poisson structures appear in a large variety of contexts, ranging from string theory, classical/quantum mechanics and differential geometry to abstract algebra, algebraic geometry and representation theory. In each one of these contexts, it turns out that the Poisson structure is not a theoretical artifact, but a key element which, unsolicited, comes along with the problem that is investigated, and its delicate properties are decisive for the solution to the problem in nearly all cases. Poisson Structures is the first book that offers a comprehensive introduction to the theory, as well as an overview of the different aspects of Poisson structures. The first part covers solid foundations, the central part consists of a detailed exposition of the different known types of Poisson structures and of the (usually mathematical) contexts in which they appear, and the final part is devoted to the two main applications of Poisson structures (integrable systems and deformation quantization). The clear structure of the book makes it adequate for readers who come across Poisson structures in their research or for graduate students or advanced researchers who are interested in an introduction to the many facets and applications of Poisson structures.
Publisher: Springer Science & Business Media
ISBN: 3642310907
Category : Mathematics
Languages : en
Pages : 470
Book Description
Poisson structures appear in a large variety of contexts, ranging from string theory, classical/quantum mechanics and differential geometry to abstract algebra, algebraic geometry and representation theory. In each one of these contexts, it turns out that the Poisson structure is not a theoretical artifact, but a key element which, unsolicited, comes along with the problem that is investigated, and its delicate properties are decisive for the solution to the problem in nearly all cases. Poisson Structures is the first book that offers a comprehensive introduction to the theory, as well as an overview of the different aspects of Poisson structures. The first part covers solid foundations, the central part consists of a detailed exposition of the different known types of Poisson structures and of the (usually mathematical) contexts in which they appear, and the final part is devoted to the two main applications of Poisson structures (integrable systems and deformation quantization). The clear structure of the book makes it adequate for readers who come across Poisson structures in their research or for graduate students or advanced researchers who are interested in an introduction to the many facets and applications of Poisson structures.
Poisson Geometry in Mathematics and Physics
Author: Giuseppe Dito
Publisher: American Mathematical Soc.
ISBN: 0821844237
Category : Mathematics
Languages : en
Pages : 330
Book Description
This volume is a collection of articles by speakers at the Poisson 2006 conference. The program for Poisson 2006 was an overlap of topics that included deformation quantization, generalized complex structures, differentiable stacks, normal forms, and group-valued moment maps and reduction.
Publisher: American Mathematical Soc.
ISBN: 0821844237
Category : Mathematics
Languages : en
Pages : 330
Book Description
This volume is a collection of articles by speakers at the Poisson 2006 conference. The program for Poisson 2006 was an overlap of topics that included deformation quantization, generalized complex structures, differentiable stacks, normal forms, and group-valued moment maps and reduction.
Lectures on the Geometry of Quantization
Author: Sean Bates
Publisher: American Mathematical Soc.
ISBN: 9780821807989
Category : Mathematics
Languages : en
Pages : 150
Book Description
These notes are based on a course entitled ``Symplectic Geometry and Geometric Quantization'' taught by Alan Weinstein at the University of California, Berkeley (fall 1992) and at the Centre Emile Borel (spring 1994). The only prerequisite for the course needed is a knowledge of the basic notions from the theory of differentiable manifolds (differential forms, vector fields, transversality, etc.). The aim is to give students an introduction to the ideas of microlocal analysis and the related symplectic geometry, with an emphasis on the role these ideas play in formalizing the transition between the mathematics of classical dynamics (hamiltonian flows on symplectic manifolds) and quantum mechanics (unitary flows on Hilbert spaces). These notes are meant to function as a guide to the literature. The authors refer to other sources for many details that are omitted and can be bypassed on a first reading.
Publisher: American Mathematical Soc.
ISBN: 9780821807989
Category : Mathematics
Languages : en
Pages : 150
Book Description
These notes are based on a course entitled ``Symplectic Geometry and Geometric Quantization'' taught by Alan Weinstein at the University of California, Berkeley (fall 1992) and at the Centre Emile Borel (spring 1994). The only prerequisite for the course needed is a knowledge of the basic notions from the theory of differentiable manifolds (differential forms, vector fields, transversality, etc.). The aim is to give students an introduction to the ideas of microlocal analysis and the related symplectic geometry, with an emphasis on the role these ideas play in formalizing the transition between the mathematics of classical dynamics (hamiltonian flows on symplectic manifolds) and quantum mechanics (unitary flows on Hilbert spaces). These notes are meant to function as a guide to the literature. The authors refer to other sources for many details that are omitted and can be bypassed on a first reading.
Lectures on the Poisson Process
Author: Günter Last
Publisher: Cambridge University Press
ISBN: 1107088011
Category : Mathematics
Languages : en
Pages : 315
Book Description
A modern introduction to the Poisson process, with general point processes and random measures, and applications to stochastic geometry.
Publisher: Cambridge University Press
ISBN: 1107088011
Category : Mathematics
Languages : en
Pages : 315
Book Description
A modern introduction to the Poisson process, with general point processes and random measures, and applications to stochastic geometry.
Poisson Structures and Their Normal Forms
Author: Jean-Paul Dufour
Publisher: Springer Science & Business Media
ISBN: 3764373350
Category : Mathematics
Languages : en
Pages : 332
Book Description
The aim of this book is twofold. On the one hand, it gives a quick, self-contained introduction to Poisson geometry and related subjects. On the other hand, it presents a comprehensive treatment of the normal form problem in Poisson geometry. Even when it comes to classical results, the book gives new insights. It contains results obtained over the past 10 years which are not available in other books.
Publisher: Springer Science & Business Media
ISBN: 3764373350
Category : Mathematics
Languages : en
Pages : 332
Book Description
The aim of this book is twofold. On the one hand, it gives a quick, self-contained introduction to Poisson geometry and related subjects. On the other hand, it presents a comprehensive treatment of the normal form problem in Poisson geometry. Even when it comes to classical results, the book gives new insights. It contains results obtained over the past 10 years which are not available in other books.
Geometric Models for Noncommutative Algebras
Author: Ana Cannas da Silva
Publisher: American Mathematical Soc.
ISBN: 9780821809525
Category : Mathematics
Languages : en
Pages : 202
Book Description
The volume is based on a course, ``Geometric Models for Noncommutative Algebras'' taught by Professor Weinstein at Berkeley. Noncommutative geometry is the study of noncommutative algebras as if they were algebras of functions on spaces, for example, the commutative algebras associated to affine algebraic varieties, differentiable manifolds, topological spaces, and measure spaces. In this work, the authors discuss several types of geometric objects (in the usual sense of sets with structure) that are closely related to noncommutative algebras. Central to the discussion are symplectic and Poisson manifolds, which arise when noncommutative algebras are obtained by deforming commutative algebras. The authors also give a detailed study of groupoids (whose role in noncommutative geometry has been stressed by Connes) as well as of Lie algebroids, the infinitesimal approximations to differentiable groupoids. Featured are many interesting examples, applications, and exercises. The book starts with basic definitions and builds to (still) open questions. It is suitable for use as a graduate text. An extensive bibliography and index are included.
Publisher: American Mathematical Soc.
ISBN: 9780821809525
Category : Mathematics
Languages : en
Pages : 202
Book Description
The volume is based on a course, ``Geometric Models for Noncommutative Algebras'' taught by Professor Weinstein at Berkeley. Noncommutative geometry is the study of noncommutative algebras as if they were algebras of functions on spaces, for example, the commutative algebras associated to affine algebraic varieties, differentiable manifolds, topological spaces, and measure spaces. In this work, the authors discuss several types of geometric objects (in the usual sense of sets with structure) that are closely related to noncommutative algebras. Central to the discussion are symplectic and Poisson manifolds, which arise when noncommutative algebras are obtained by deforming commutative algebras. The authors also give a detailed study of groupoids (whose role in noncommutative geometry has been stressed by Connes) as well as of Lie algebroids, the infinitesimal approximations to differentiable groupoids. Featured are many interesting examples, applications, and exercises. The book starts with basic definitions and builds to (still) open questions. It is suitable for use as a graduate text. An extensive bibliography and index are included.
Calogero-Moser Systems and Representation Theory
Author: Pavel I. Etingof
Publisher: European Mathematical Society
ISBN: 9783037190340
Category : Mathematics
Languages : en
Pages : 108
Book Description
Calogero-Moser systems, which were originally discovered by specialists in integrable systems, are currently at the crossroads of many areas of mathematics and within the scope of interests of many mathematicians. More specifically, these systems and their generalizations turned out to have intrinsic connections with such fields as algebraic geometry (Hilbert schemes of surfaces), representation theory (double affine Hecke algebras, Lie groups, quantum groups), deformation theory (symplectic reflection algebras), homological algebra (Koszul algebras), Poisson geometry, etc. The goal of the present lecture notes is to give an introduction to the theory of Calogero-Moser systems, highlighting their interplay with these fields. Since these lectures are designed for non-experts, the author gives short introductions to each of the subjects involved and provides a number of exercises.
Publisher: European Mathematical Society
ISBN: 9783037190340
Category : Mathematics
Languages : en
Pages : 108
Book Description
Calogero-Moser systems, which were originally discovered by specialists in integrable systems, are currently at the crossroads of many areas of mathematics and within the scope of interests of many mathematicians. More specifically, these systems and their generalizations turned out to have intrinsic connections with such fields as algebraic geometry (Hilbert schemes of surfaces), representation theory (double affine Hecke algebras, Lie groups, quantum groups), deformation theory (symplectic reflection algebras), homological algebra (Koszul algebras), Poisson geometry, etc. The goal of the present lecture notes is to give an introduction to the theory of Calogero-Moser systems, highlighting their interplay with these fields. Since these lectures are designed for non-experts, the author gives short introductions to each of the subjects involved and provides a number of exercises.