Author: John Fox
Publisher: SAGE Publications
ISBN: 1483321312
Category : Social Science
Languages : en
Pages : 612
Book Description
Combining a modern, data-analytic perspective with a focus on applications in the social sciences, the Third Edition of Applied Regression Analysis and Generalized Linear Models provides in-depth coverage of regression analysis, generalized linear models, and closely related methods, such as bootstrapping and missing data. Updated throughout, this Third Edition includes new chapters on mixed-effects models for hierarchical and longitudinal data. Although the text is largely accessible to readers with a modest background in statistics and mathematics, author John Fox also presents more advanced material in optional sections and chapters throughout the book. Accompanying website resources containing all answers to the end-of-chapter exercises. Answers to odd-numbered questions, as well as datasets and other student resources are available on the author′s website. NEW! Bonus chapter on Bayesian Estimation of Regression Models also available at the author′s website.
Applied Regression Analysis and Generalized Linear Models
Author: John Fox
Publisher: SAGE Publications
ISBN: 1483321312
Category : Social Science
Languages : en
Pages : 612
Book Description
Combining a modern, data-analytic perspective with a focus on applications in the social sciences, the Third Edition of Applied Regression Analysis and Generalized Linear Models provides in-depth coverage of regression analysis, generalized linear models, and closely related methods, such as bootstrapping and missing data. Updated throughout, this Third Edition includes new chapters on mixed-effects models for hierarchical and longitudinal data. Although the text is largely accessible to readers with a modest background in statistics and mathematics, author John Fox also presents more advanced material in optional sections and chapters throughout the book. Accompanying website resources containing all answers to the end-of-chapter exercises. Answers to odd-numbered questions, as well as datasets and other student resources are available on the author′s website. NEW! Bonus chapter on Bayesian Estimation of Regression Models also available at the author′s website.
Publisher: SAGE Publications
ISBN: 1483321312
Category : Social Science
Languages : en
Pages : 612
Book Description
Combining a modern, data-analytic perspective with a focus on applications in the social sciences, the Third Edition of Applied Regression Analysis and Generalized Linear Models provides in-depth coverage of regression analysis, generalized linear models, and closely related methods, such as bootstrapping and missing data. Updated throughout, this Third Edition includes new chapters on mixed-effects models for hierarchical and longitudinal data. Although the text is largely accessible to readers with a modest background in statistics and mathematics, author John Fox also presents more advanced material in optional sections and chapters throughout the book. Accompanying website resources containing all answers to the end-of-chapter exercises. Answers to odd-numbered questions, as well as datasets and other student resources are available on the author′s website. NEW! Bonus chapter on Bayesian Estimation of Regression Models also available at the author′s website.
Bootstrap Tests for Regression Models
Author: L. Godfrey
Publisher: Springer
ISBN: 0230233732
Category : Business & Economics
Languages : en
Pages : 342
Book Description
An accessible discussion examining computationally-intensive techniques and bootstrap methods, providing ways to improve the finite-sample performance of well-known asymptotic tests for regression models. This book uses the linear regression model as a framework for introducing simulation-based tests to help perform econometric analyses.
Publisher: Springer
ISBN: 0230233732
Category : Business & Economics
Languages : en
Pages : 342
Book Description
An accessible discussion examining computationally-intensive techniques and bootstrap methods, providing ways to improve the finite-sample performance of well-known asymptotic tests for regression models. This book uses the linear regression model as a framework for introducing simulation-based tests to help perform econometric analyses.
Bootstrap Methods
Author: Michael R. Chernick
Publisher: John Wiley & Sons
ISBN: 1118211596
Category : Mathematics
Languages : en
Pages : 337
Book Description
A practical and accessible introduction to the bootstrap method——newly revised and updated Over the past decade, the application of bootstrap methods to new areas of study has expanded, resulting in theoretical and applied advances across various fields. Bootstrap Methods, Second Edition is a highly approachable guide to the multidisciplinary, real-world uses of bootstrapping and is ideal for readers who have a professional interest in its methods, but are without an advanced background in mathematics. Updated to reflect current techniques and the most up-to-date work on the topic, the Second Edition features: The addition of a second, extended bibliography devoted solely to publications from 1999–2007, which is a valuable collection of references on the latest research in the field A discussion of the new areas of applicability for bootstrap methods, including use in the pharmaceutical industry for estimating individual and population bioequivalence in clinical trials A revised chapter on when and why bootstrap fails and remedies for overcoming these drawbacks Added coverage on regression, censored data applications, P-value adjustment, ratio estimators, and missing data New examples and illustrations as well as extensive historical notes at the end of each chapter With a strong focus on application, detailed explanations of methodology, and complete coverage of modern developments in the field, Bootstrap Methods, Second Edition is an indispensable reference for applied statisticians, engineers, scientists, clinicians, and other practitioners who regularly use statistical methods in research. It is also suitable as a supplementary text for courses in statistics and resampling methods at the upper-undergraduate and graduate levels.
Publisher: John Wiley & Sons
ISBN: 1118211596
Category : Mathematics
Languages : en
Pages : 337
Book Description
A practical and accessible introduction to the bootstrap method——newly revised and updated Over the past decade, the application of bootstrap methods to new areas of study has expanded, resulting in theoretical and applied advances across various fields. Bootstrap Methods, Second Edition is a highly approachable guide to the multidisciplinary, real-world uses of bootstrapping and is ideal for readers who have a professional interest in its methods, but are without an advanced background in mathematics. Updated to reflect current techniques and the most up-to-date work on the topic, the Second Edition features: The addition of a second, extended bibliography devoted solely to publications from 1999–2007, which is a valuable collection of references on the latest research in the field A discussion of the new areas of applicability for bootstrap methods, including use in the pharmaceutical industry for estimating individual and population bioequivalence in clinical trials A revised chapter on when and why bootstrap fails and remedies for overcoming these drawbacks Added coverage on regression, censored data applications, P-value adjustment, ratio estimators, and missing data New examples and illustrations as well as extensive historical notes at the end of each chapter With a strong focus on application, detailed explanations of methodology, and complete coverage of modern developments in the field, Bootstrap Methods, Second Edition is an indispensable reference for applied statisticians, engineers, scientists, clinicians, and other practitioners who regularly use statistical methods in research. It is also suitable as a supplementary text for courses in statistics and resampling methods at the upper-undergraduate and graduate levels.
Beyond Multiple Linear Regression
Author: Paul Roback
Publisher: CRC Press
ISBN: 1439885400
Category : Mathematics
Languages : en
Pages : 436
Book Description
Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R is designed for undergraduate students who have successfully completed a multiple linear regression course, helping them develop an expanded modeling toolkit that includes non-normal responses and correlated structure. Even though there is no mathematical prerequisite, the authors still introduce fairly sophisticated topics such as likelihood theory, zero-inflated Poisson, and parametric bootstrapping in an intuitive and applied manner. The case studies and exercises feature real data and real research questions; thus, most of the data in the textbook comes from collaborative research conducted by the authors and their students, or from student projects. Every chapter features a variety of conceptual exercises, guided exercises, and open-ended exercises using real data. After working through this material, students will develop an expanded toolkit and a greater appreciation for the wider world of data and statistical modeling. A solutions manual for all exercises is available to qualified instructors at the book’s website at www.routledge.com, and data sets and Rmd files for all case studies and exercises are available at the authors’ GitHub repo (https://github.com/proback/BeyondMLR)
Publisher: CRC Press
ISBN: 1439885400
Category : Mathematics
Languages : en
Pages : 436
Book Description
Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R is designed for undergraduate students who have successfully completed a multiple linear regression course, helping them develop an expanded modeling toolkit that includes non-normal responses and correlated structure. Even though there is no mathematical prerequisite, the authors still introduce fairly sophisticated topics such as likelihood theory, zero-inflated Poisson, and parametric bootstrapping in an intuitive and applied manner. The case studies and exercises feature real data and real research questions; thus, most of the data in the textbook comes from collaborative research conducted by the authors and their students, or from student projects. Every chapter features a variety of conceptual exercises, guided exercises, and open-ended exercises using real data. After working through this material, students will develop an expanded toolkit and a greater appreciation for the wider world of data and statistical modeling. A solutions manual for all exercises is available to qualified instructors at the book’s website at www.routledge.com, and data sets and Rmd files for all case studies and exercises are available at the authors’ GitHub repo (https://github.com/proback/BeyondMLR)
Randomization, Bootstrap and Monte Carlo Methods in Biology, Second Edition
Author: Bryan F.J. Manly
Publisher: CRC Press
ISBN: 9780412721304
Category : Mathematics
Languages : en
Pages : 428
Book Description
Randomization, Bootstrap and Monte Carlo Methods in Biology, Second Edition features new material on on bootstrap confidence intervals and significance testing, and incorporates new developments on the treatments of randomization methods for regression and analysis variation, including descriptions of applications of these methods in spreadsheet programs such as Lotus and other commercial packages. This second edition illustrates the value of modern computer intensive methods in the solution of a wide range of problems, with particular emphasis on biological applications. Examples given in the text include the controversial topic of whether there is periodicity between co-occurrences of species on islands.
Publisher: CRC Press
ISBN: 9780412721304
Category : Mathematics
Languages : en
Pages : 428
Book Description
Randomization, Bootstrap and Monte Carlo Methods in Biology, Second Edition features new material on on bootstrap confidence intervals and significance testing, and incorporates new developments on the treatments of randomization methods for regression and analysis variation, including descriptions of applications of these methods in spreadsheet programs such as Lotus and other commercial packages. This second edition illustrates the value of modern computer intensive methods in the solution of a wide range of problems, with particular emphasis on biological applications. Examples given in the text include the controversial topic of whether there is periodicity between co-occurrences of species on islands.
Least Squares Regressions with the Bootstrap
Author: Jonas Böhmer
Publisher: GRIN Verlag
ISBN: 3640422414
Category : Mathematics
Languages : en
Pages : 54
Book Description
Diploma Thesis from the year 2009 in the subject Mathematics - Statistics, grade: 1,6, University of Bonn (Statistische Abteilung der Rechts- und Staatswissenschaftlichen Fakultät), course: Diplomarbeit bei Prof.Dr. Alois Kneip, language: English, abstract: The statistical technique called bootstrap is usable with a lot of inferential problems and it is the main topic of this paper. Since the bootstrap provides material for a whole series of books it is essential to pick one special aspect of the bootstrap and investigate it in depth, otherwise the analysis would inevitably become too general. This aspect is the topic of regression. Hence, this paper will introduce the bootstrap and compare the performance of the new inference methods which it provides with some classical methods of judging a regression which were used in the years before the bootstrap. Therefore the remainder of this paper is as follows: First there will be a description of the basic model in which all of the following investigations will be done, chapter two. The next chapter will describe the different regression techniques which try to solve the model. The fourth chapter is going to show the behavior of these regression techniques in large samples, i.e. shows some classical methods of statistical inference. Following chapter five will give an introduction to the bootstrap which will be succeeded by a description of the bootstrap in regression problems, chapter six. The seventh chapter will show how inference is done with the help of the bootstrap. The eighth chapter is going to compare the performances of classical and bootstrap inference in regressions. Before the concluding remarks of chapter ten, there will be a practical application in chapter nine which tries to prove some observations of the preceeding chapters.
Publisher: GRIN Verlag
ISBN: 3640422414
Category : Mathematics
Languages : en
Pages : 54
Book Description
Diploma Thesis from the year 2009 in the subject Mathematics - Statistics, grade: 1,6, University of Bonn (Statistische Abteilung der Rechts- und Staatswissenschaftlichen Fakultät), course: Diplomarbeit bei Prof.Dr. Alois Kneip, language: English, abstract: The statistical technique called bootstrap is usable with a lot of inferential problems and it is the main topic of this paper. Since the bootstrap provides material for a whole series of books it is essential to pick one special aspect of the bootstrap and investigate it in depth, otherwise the analysis would inevitably become too general. This aspect is the topic of regression. Hence, this paper will introduce the bootstrap and compare the performance of the new inference methods which it provides with some classical methods of judging a regression which were used in the years before the bootstrap. Therefore the remainder of this paper is as follows: First there will be a description of the basic model in which all of the following investigations will be done, chapter two. The next chapter will describe the different regression techniques which try to solve the model. The fourth chapter is going to show the behavior of these regression techniques in large samples, i.e. shows some classical methods of statistical inference. Following chapter five will give an introduction to the bootstrap which will be succeeded by a description of the bootstrap in regression problems, chapter six. The seventh chapter will show how inference is done with the help of the bootstrap. The eighth chapter is going to compare the performances of classical and bootstrap inference in regressions. Before the concluding remarks of chapter ten, there will be a practical application in chapter nine which tries to prove some observations of the preceeding chapters.
Randomization, Bootstrap and Monte Carlo Methods in Biology
Author: Bryan F.J. Manly
Publisher: CRC Press
ISBN: 1482296411
Category : Mathematics
Languages : en
Pages : 468
Book Description
Modern computer-intensive statistical methods play a key role in solving many problems across a wide range of scientific disciplines. This new edition of the bestselling Randomization, Bootstrap and Monte Carlo Methods in Biology illustrates the value of a number of these methods with an emphasis on biological applications. This textbook focuses on three related areas in computational statistics: randomization, bootstrapping, and Monte Carlo methods of inference. The author emphasizes the sampling approach within randomization testing and confidence intervals. Similar to randomization, the book shows how bootstrapping, or resampling, can be used for confidence intervals and tests of significance. It also explores how to use Monte Carlo methods to test hypotheses and construct confidence intervals. New to the Third Edition Updated information on regression and time series analysis, multivariate methods, survival and growth data as well as software for computational statistics References that reflect recent developments in methodology and computing techniques Additional references on new applications of computer-intensive methods in biology Providing comprehensive coverage of computer-intensive applications while also offering data sets online, Randomization, Bootstrap and Monte Carlo Methods in Biology, Third Edition supplies a solid foundation for the ever-expanding field of statistics and quantitative analysis in biology.
Publisher: CRC Press
ISBN: 1482296411
Category : Mathematics
Languages : en
Pages : 468
Book Description
Modern computer-intensive statistical methods play a key role in solving many problems across a wide range of scientific disciplines. This new edition of the bestselling Randomization, Bootstrap and Monte Carlo Methods in Biology illustrates the value of a number of these methods with an emphasis on biological applications. This textbook focuses on three related areas in computational statistics: randomization, bootstrapping, and Monte Carlo methods of inference. The author emphasizes the sampling approach within randomization testing and confidence intervals. Similar to randomization, the book shows how bootstrapping, or resampling, can be used for confidence intervals and tests of significance. It also explores how to use Monte Carlo methods to test hypotheses and construct confidence intervals. New to the Third Edition Updated information on regression and time series analysis, multivariate methods, survival and growth data as well as software for computational statistics References that reflect recent developments in methodology and computing techniques Additional references on new applications of computer-intensive methods in biology Providing comprehensive coverage of computer-intensive applications while also offering data sets online, Randomization, Bootstrap and Monte Carlo Methods in Biology, Third Edition supplies a solid foundation for the ever-expanding field of statistics and quantitative analysis in biology.
Practical Spreadsheet Modeling Using @Risk
Author: Dale Lehman
Publisher: CRC Press
ISBN: 0429508700
Category : Business & Economics
Languages : en
Pages : 222
Book Description
Practical Spreadsheet Modeling Using @Risk provides a guide of how to construct applied decision analysis models in spreadsheets. The focus is on the use of Monte Carlo simulation to provide quantitative assessment of uncertainties and key risk drivers. The book presents numerous examples based on real data and relevant practical decisions in a variety of settings, including health care, transportation, finance, natural resources, technology, manufacturing, retail, and sports and entertainment. All examples involve decision problems where uncertainties make simulation modeling useful to obtain decision insights and explore alternative choices. Good spreadsheet modeling practices are highlighted. The book is suitable for graduate students or advanced undergraduates in business, public policy, health care administration, or any field amenable to simulation modeling of decision problems. The book is also useful for applied practitioners seeking to build or enhance their spreadsheet modeling skills. Features Step-by-step examples of spreadsheet modeling and risk analysis in a variety of fields Description of probabilistic methods, their theoretical foundations, and their practical application in a spreadsheet environment Extensive example models and exercises based on real data and relevant decision problems Comprehensive use of the @Risk software for simulation analysis, including a free one-year educational software license
Publisher: CRC Press
ISBN: 0429508700
Category : Business & Economics
Languages : en
Pages : 222
Book Description
Practical Spreadsheet Modeling Using @Risk provides a guide of how to construct applied decision analysis models in spreadsheets. The focus is on the use of Monte Carlo simulation to provide quantitative assessment of uncertainties and key risk drivers. The book presents numerous examples based on real data and relevant practical decisions in a variety of settings, including health care, transportation, finance, natural resources, technology, manufacturing, retail, and sports and entertainment. All examples involve decision problems where uncertainties make simulation modeling useful to obtain decision insights and explore alternative choices. Good spreadsheet modeling practices are highlighted. The book is suitable for graduate students or advanced undergraduates in business, public policy, health care administration, or any field amenable to simulation modeling of decision problems. The book is also useful for applied practitioners seeking to build or enhance their spreadsheet modeling skills. Features Step-by-step examples of spreadsheet modeling and risk analysis in a variety of fields Description of probabilistic methods, their theoretical foundations, and their practical application in a spreadsheet environment Extensive example models and exercises based on real data and relevant decision problems Comprehensive use of the @Risk software for simulation analysis, including a free one-year educational software license
Applied Linear Regression
Author: Sanford Weisberg
Publisher: John Wiley & Sons
ISBN: 1118625951
Category : Mathematics
Languages : en
Pages : 266
Book Description
Master linear regression techniques with a new edition of a classic text Reviews of the Second Edition: "I found it enjoyable reading and so full of interesting material that even the well-informed reader will probably find something new . . . a necessity for all of those who do linear regression." —Technometrics, February 1987 "Overall, I feel that the book is a valuable addition to the now considerable list of texts on applied linear regression. It should be a strong contender as the leading text for a first serious course in regression analysis." —American Scientist, May–June 1987 Applied Linear Regression, Third Edition has been thoroughly updated to help students master the theory and applications of linear regression modeling. Focusing on model building, assessing fit and reliability, and drawing conclusions, the text demonstrates how to develop estimation, confidence, and testing procedures primarily through the use of least squares regression. To facilitate quick learning, the Third Edition stresses the use of graphical methods in an effort to find appropriate models and to better understand them. In that spirit, most analyses and homework problems use graphs for the discovery of structure as well as for the summarization of results. The Third Edition incorporates new material reflecting the latest advances, including: Use of smoothers to summarize a scatterplot Box-Cox and graphical methods for selecting transformations Use of the delta method for inference about complex combinations of parameters Computationally intensive methods and simulation, including the bootstrap method Expanded chapters on nonlinear and logistic regression Completely revised chapters on multiple regression, diagnostics, and generalizations of regression Readers will also find helpful pedagogical tools and learning aids, including: More than 100 exercises, most based on interesting real-world data Web primers demonstrating how to use standard statistical packages, including R, S-Plus®, SPSS®, SAS®, and JMP®, to work all the examples and exercises in the text A free online library for R and S-Plus that makes the methods discussed in the book easy to use With its focus on graphical methods and analysis, coupled with many practical examples and exercises, this is an excellent textbook for upper-level undergraduates and graduate students, who will quickly learn how to use linear regression analysis techniques to solve and gain insight into real-life problems.
Publisher: John Wiley & Sons
ISBN: 1118625951
Category : Mathematics
Languages : en
Pages : 266
Book Description
Master linear regression techniques with a new edition of a classic text Reviews of the Second Edition: "I found it enjoyable reading and so full of interesting material that even the well-informed reader will probably find something new . . . a necessity for all of those who do linear regression." —Technometrics, February 1987 "Overall, I feel that the book is a valuable addition to the now considerable list of texts on applied linear regression. It should be a strong contender as the leading text for a first serious course in regression analysis." —American Scientist, May–June 1987 Applied Linear Regression, Third Edition has been thoroughly updated to help students master the theory and applications of linear regression modeling. Focusing on model building, assessing fit and reliability, and drawing conclusions, the text demonstrates how to develop estimation, confidence, and testing procedures primarily through the use of least squares regression. To facilitate quick learning, the Third Edition stresses the use of graphical methods in an effort to find appropriate models and to better understand them. In that spirit, most analyses and homework problems use graphs for the discovery of structure as well as for the summarization of results. The Third Edition incorporates new material reflecting the latest advances, including: Use of smoothers to summarize a scatterplot Box-Cox and graphical methods for selecting transformations Use of the delta method for inference about complex combinations of parameters Computationally intensive methods and simulation, including the bootstrap method Expanded chapters on nonlinear and logistic regression Completely revised chapters on multiple regression, diagnostics, and generalizations of regression Readers will also find helpful pedagogical tools and learning aids, including: More than 100 exercises, most based on interesting real-world data Web primers demonstrating how to use standard statistical packages, including R, S-Plus®, SPSS®, SAS®, and JMP®, to work all the examples and exercises in the text A free online library for R and S-Plus that makes the methods discussed in the book easy to use With its focus on graphical methods and analysis, coupled with many practical examples and exercises, this is an excellent textbook for upper-level undergraduates and graduate students, who will quickly learn how to use linear regression analysis techniques to solve and gain insight into real-life problems.
Regression and Time Series Model Selection
Author: Allan D. R. McQuarrie
Publisher: World Scientific
ISBN: 9812385452
Category : Mathematics
Languages : en
Pages : 479
Book Description
This important book describes procedures for selecting a model from a large set of competing statistical models. It includes model selection techniques for univariate and multivariate regression models, univariate and multivariate autoregressive models, nonparametric (including wavelets) and semiparametric regression models, and quasi-likelihood and robust regression models. Information-based model selection criteria are discussed, and small sample and asymptotic properties are presented. The book also provides examples and large scale simulation studies comparing the performances of information-based model selection criteria, bootstrapping, and cross-validation selection methods over a wide range of models.
Publisher: World Scientific
ISBN: 9812385452
Category : Mathematics
Languages : en
Pages : 479
Book Description
This important book describes procedures for selecting a model from a large set of competing statistical models. It includes model selection techniques for univariate and multivariate regression models, univariate and multivariate autoregressive models, nonparametric (including wavelets) and semiparametric regression models, and quasi-likelihood and robust regression models. Information-based model selection criteria are discussed, and small sample and asymptotic properties are presented. The book also provides examples and large scale simulation studies comparing the performances of information-based model selection criteria, bootstrapping, and cross-validation selection methods over a wide range of models.