Author: M.A.L. Thathachar
Publisher: Springer Science & Business Media
ISBN: 1441990526
Category : Science
Languages : en
Pages : 275
Book Description
Networks of Learning Automata: Techniques for Online Stochastic Optimization is a comprehensive account of learning automata models with emphasis on multiautomata systems. It considers synthesis of complex learning structures from simple building blocks and uses stochastic algorithms for refining probabilities of selecting actions. Mathematical analysis of the behavior of games and feedforward networks is provided. Algorithms considered here can be used for online optimization of systems based on noisy measurements of performance index. Also, algorithms that assure convergence to the global optimum are presented. Parallel operation of automata systems for improving speed of convergence is described. The authors also include extensive discussion of how learning automata solutions can be constructed in a variety of applications.
Networks of Learning Automata
Author: M.A.L. Thathachar
Publisher: Springer Science & Business Media
ISBN: 1441990526
Category : Science
Languages : en
Pages : 275
Book Description
Networks of Learning Automata: Techniques for Online Stochastic Optimization is a comprehensive account of learning automata models with emphasis on multiautomata systems. It considers synthesis of complex learning structures from simple building blocks and uses stochastic algorithms for refining probabilities of selecting actions. Mathematical analysis of the behavior of games and feedforward networks is provided. Algorithms considered here can be used for online optimization of systems based on noisy measurements of performance index. Also, algorithms that assure convergence to the global optimum are presented. Parallel operation of automata systems for improving speed of convergence is described. The authors also include extensive discussion of how learning automata solutions can be constructed in a variety of applications.
Publisher: Springer Science & Business Media
ISBN: 1441990526
Category : Science
Languages : en
Pages : 275
Book Description
Networks of Learning Automata: Techniques for Online Stochastic Optimization is a comprehensive account of learning automata models with emphasis on multiautomata systems. It considers synthesis of complex learning structures from simple building blocks and uses stochastic algorithms for refining probabilities of selecting actions. Mathematical analysis of the behavior of games and feedforward networks is provided. Algorithms considered here can be used for online optimization of systems based on noisy measurements of performance index. Also, algorithms that assure convergence to the global optimum are presented. Parallel operation of automata systems for improving speed of convergence is described. The authors also include extensive discussion of how learning automata solutions can be constructed in a variety of applications.
Learning Automata and Stochastic Optimization
Author: A.S. Poznyak
Publisher: Springer
ISBN: 9783662174876
Category : Technology & Engineering
Languages : en
Pages : 207
Book Description
In the last decade there has been a steadily growing need for and interest in computational methods for solving stochastic optimization problems with or wihout constraints. Optimization techniques have been gaining greater acceptance in many industrial applications, and learning systems have made a significant impact on engineering problems in many areas, including modelling, control, optimization, pattern recognition, signal processing and diagnosis. Learning automata have an advantage over other methods in being applicable across a wide range of functions. Featuring new and efficient learning techniques for stochastic optimization, and with examples illustrating the practical application of these techniques, this volume will be of benefit to practicing control engineers and to graduate students taking courses in optimization, control theory or statistics.
Publisher: Springer
ISBN: 9783662174876
Category : Technology & Engineering
Languages : en
Pages : 207
Book Description
In the last decade there has been a steadily growing need for and interest in computational methods for solving stochastic optimization problems with or wihout constraints. Optimization techniques have been gaining greater acceptance in many industrial applications, and learning systems have made a significant impact on engineering problems in many areas, including modelling, control, optimization, pattern recognition, signal processing and diagnosis. Learning automata have an advantage over other methods in being applicable across a wide range of functions. Featuring new and efficient learning techniques for stochastic optimization, and with examples illustrating the practical application of these techniques, this volume will be of benefit to practicing control engineers and to graduate students taking courses in optimization, control theory or statistics.
Learning Automata and Stochastic Optimization
Author: A.S. Poznyak
Publisher: Springer
ISBN:
Category : Computers
Languages : en
Pages : 230
Book Description
In the last decade there has been a steadily growing need for and interest in computational methods for solving stochastic optimization problems with or wihout constraints. Optimization techniques have been gaining greater acceptance in many industrial applications, and learning systems have made a significant impact on engineering problems in many areas, including modelling, control, optimization, pattern recognition, signal processing and diagnosis. Learning automata have an advantage over other methods in being applicable across a wide range of functions. Featuring new and efficient learning techniques for stochastic optimization, and with examples illustrating the practical application of these techniques, this volume will be of benefit to practicing control engineers and to graduate students taking courses in optimization, control theory or statistics.
Publisher: Springer
ISBN:
Category : Computers
Languages : en
Pages : 230
Book Description
In the last decade there has been a steadily growing need for and interest in computational methods for solving stochastic optimization problems with or wihout constraints. Optimization techniques have been gaining greater acceptance in many industrial applications, and learning systems have made a significant impact on engineering problems in many areas, including modelling, control, optimization, pattern recognition, signal processing and diagnosis. Learning automata have an advantage over other methods in being applicable across a wide range of functions. Featuring new and efficient learning techniques for stochastic optimization, and with examples illustrating the practical application of these techniques, this volume will be of benefit to practicing control engineers and to graduate students taking courses in optimization, control theory or statistics.
Learning Automata
Author: K. Najim
Publisher: Pergamon
ISBN:
Category : Computers
Languages : en
Pages : 248
Book Description
Hardbound. Learning systems have made a significant impact on all areas of engineering problems. They are attractive methods for solving many problems which are too complex, highly non-linear, uncertain, incomplete or non-stationary, and have subtle and interactive exchanges with the environment where they operate. The main aim of the book is to give a systematic treatment of learning automata and to produce a guide to a wide variety of ideas and methods that can be used in learning systems, including enough theoretical material to enable the user of the relevant techniques and concepts to understand why and how they can be used. The book also contains the materials that are necessary for the understanding and development of learning automata for different purposes such as processes identification, optimization and control. Learning Automata: Theory and Applications may be recommended as a reference for courses on learning automata, modelling, co
Publisher: Pergamon
ISBN:
Category : Computers
Languages : en
Pages : 248
Book Description
Hardbound. Learning systems have made a significant impact on all areas of engineering problems. They are attractive methods for solving many problems which are too complex, highly non-linear, uncertain, incomplete or non-stationary, and have subtle and interactive exchanges with the environment where they operate. The main aim of the book is to give a systematic treatment of learning automata and to produce a guide to a wide variety of ideas and methods that can be used in learning systems, including enough theoretical material to enable the user of the relevant techniques and concepts to understand why and how they can be used. The book also contains the materials that are necessary for the understanding and development of learning automata for different purposes such as processes identification, optimization and control. Learning Automata: Theory and Applications may be recommended as a reference for courses on learning automata, modelling, co
Learning Automata
Author: Kumpati S. Narendra
Publisher: Courier Corporation
ISBN: 0486268462
Category : Technology & Engineering
Languages : en
Pages : 498
Book Description
This self-contained introductory text on the behavior of learning automata focuses on how a sequential decision-maker with a finite number of choices responds in a random environment. Topics include fixed structure automata, variable structure stochastic automata, convergence, 0 and S models, nonstationary environments, interconnected automata and games, and applications of learning automata. A must for all students of stochastic algorithms, this treatment is the work of two well-known scientists and is suitable for a one-semester graduate course in automata theory and stochastic algorithms. This volume also provides a fine guide for independent study and a reference for students and professionals in operations research, computer science, artificial intelligence, and robotics. The authors have provided a new preface for this edition.
Publisher: Courier Corporation
ISBN: 0486268462
Category : Technology & Engineering
Languages : en
Pages : 498
Book Description
This self-contained introductory text on the behavior of learning automata focuses on how a sequential decision-maker with a finite number of choices responds in a random environment. Topics include fixed structure automata, variable structure stochastic automata, convergence, 0 and S models, nonstationary environments, interconnected automata and games, and applications of learning automata. A must for all students of stochastic algorithms, this treatment is the work of two well-known scientists and is suitable for a one-semester graduate course in automata theory and stochastic algorithms. This volume also provides a fine guide for independent study and a reference for students and professionals in operations research, computer science, artificial intelligence, and robotics. The authors have provided a new preface for this edition.
Cellular Learning Automata: Theory and Applications
Author: Reza Vafashoar
Publisher: Springer Nature
ISBN: 3030531414
Category : Technology & Engineering
Languages : en
Pages : 377
Book Description
This book highlights both theoretical and applied advances in cellular learning automata (CLA), a type of hybrid computational model that has been successfully employed in various areas to solve complex problems and to model, learn, or simulate complicated patterns of behavior. Owing to CLA’s parallel and learning abilities, it has proven to be quite effective in uncertain, time-varying, decentralized, and distributed environments. The book begins with a brief introduction to various CLA models, before focusing on recently developed CLA variants. In turn, the research areas related to CLA are addressed as bibliometric network analysis perspectives. The next part of the book presents CLA-based solutions to several computer science problems in e.g. static optimization, dynamic optimization, wireless networks, mesh networks, and cloud computing. Given its scope, the book is well suited for all researchers in the fields of artificial intelligence and reinforcement learning.
Publisher: Springer Nature
ISBN: 3030531414
Category : Technology & Engineering
Languages : en
Pages : 377
Book Description
This book highlights both theoretical and applied advances in cellular learning automata (CLA), a type of hybrid computational model that has been successfully employed in various areas to solve complex problems and to model, learn, or simulate complicated patterns of behavior. Owing to CLA’s parallel and learning abilities, it has proven to be quite effective in uncertain, time-varying, decentralized, and distributed environments. The book begins with a brief introduction to various CLA models, before focusing on recently developed CLA variants. In turn, the research areas related to CLA are addressed as bibliometric network analysis perspectives. The next part of the book presents CLA-based solutions to several computer science problems in e.g. static optimization, dynamic optimization, wireless networks, mesh networks, and cloud computing. Given its scope, the book is well suited for all researchers in the fields of artificial intelligence and reinforcement learning.
Simulation-Based Optimization
Author: Abhijit Gosavi
Publisher: Springer
ISBN: 1489974911
Category : Business & Economics
Languages : en
Pages : 530
Book Description
Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduce the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques – especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms. Key features of this revised and improved Second Edition include: · Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search and meta-heuristics (simulated annealing, tabu search, and genetic algorithms) · Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming (value and policy iteration) for discounted, average, and total reward performance metrics · An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata · A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online) and convergence proofs, via Banach fixed point theory and Ordinary Differential Equations Themed around three areas in separate sets of chapters – Static Simulation Optimization, Reinforcement Learning and Convergence Analysis – this book is written for researchers and students in the fields of engineering (industrial, systems, electrical and computer), operations research, computer science and applied mathematics.
Publisher: Springer
ISBN: 1489974911
Category : Business & Economics
Languages : en
Pages : 530
Book Description
Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduce the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques – especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms. Key features of this revised and improved Second Edition include: · Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search and meta-heuristics (simulated annealing, tabu search, and genetic algorithms) · Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming (value and policy iteration) for discounted, average, and total reward performance metrics · An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata · A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online) and convergence proofs, via Banach fixed point theory and Ordinary Differential Equations Themed around three areas in separate sets of chapters – Static Simulation Optimization, Reinforcement Learning and Convergence Analysis – this book is written for researchers and students in the fields of engineering (industrial, systems, electrical and computer), operations research, computer science and applied mathematics.
Recent Advances in Learning Automata
Author: Alireza Rezvanian
Publisher: Springer
ISBN: 3319724282
Category : Technology & Engineering
Languages : en
Pages : 471
Book Description
This book collects recent theoretical advances and concrete applications of learning automata (LAs) in various areas of computer science, presenting a broad treatment of the computer science field in a survey style. Learning automata (LAs) have proven to be effective decision-making agents, especially within unknown stochastic environments. The book starts with a brief explanation of LAs and their baseline variations. It subsequently introduces readers to a number of recently developed, complex structures used to supplement LAs, and describes their steady-state behaviors. These complex structures have been developed because, by design, LAs are simple units used to perform simple tasks; their full potential can only be tapped when several interconnected LAs cooperate to produce a group synergy. In turn, the next part of the book highlights a range of LA-based applications in diverse computer science domains, from wireless sensor networks, to peer-to-peer networks, to complex social networks, and finally to Petri nets. The book accompanies the reader on a comprehensive journey, starting from basic concepts, continuing to recent theoretical findings, and ending in the applications of LAs in problems from numerous research domains. As such, the book offers a valuable resource for all computer engineers, scientists, and students, especially those whose work involves the reinforcement learning and artificial intelligence domains.
Publisher: Springer
ISBN: 3319724282
Category : Technology & Engineering
Languages : en
Pages : 471
Book Description
This book collects recent theoretical advances and concrete applications of learning automata (LAs) in various areas of computer science, presenting a broad treatment of the computer science field in a survey style. Learning automata (LAs) have proven to be effective decision-making agents, especially within unknown stochastic environments. The book starts with a brief explanation of LAs and their baseline variations. It subsequently introduces readers to a number of recently developed, complex structures used to supplement LAs, and describes their steady-state behaviors. These complex structures have been developed because, by design, LAs are simple units used to perform simple tasks; their full potential can only be tapped when several interconnected LAs cooperate to produce a group synergy. In turn, the next part of the book highlights a range of LA-based applications in diverse computer science domains, from wireless sensor networks, to peer-to-peer networks, to complex social networks, and finally to Petri nets. The book accompanies the reader on a comprehensive journey, starting from basic concepts, continuing to recent theoretical findings, and ending in the applications of LAs in problems from numerous research domains. As such, the book offers a valuable resource for all computer engineers, scientists, and students, especially those whose work involves the reinforcement learning and artificial intelligence domains.
Advances in Learning Automata and Intelligent Optimization
Author: Javidan Kazemi Kordestani
Publisher: Springer Nature
ISBN: 3030762912
Category : Technology & Engineering
Languages : en
Pages : 340
Book Description
This book is devoted to the leading research in applying learning automaton (LA) and heuristics for solving benchmark and real-world optimization problems. The ever-increasing application of the LA as a promising reinforcement learning technique in artificial intelligence makes it necessary to provide scholars, scientists, and engineers with a practical discussion on LA solutions for optimization. The book starts with a brief introduction to LA models for optimization. Afterward, the research areas related to LA and optimization are addressed as bibliometric network analysis. Then, LA's application in behavior control in evolutionary computation, and memetic models of object migration automata and cellular learning automata for solving NP hard problems are considered. Next, an overview of multi-population methods for DOPs, LA's application in dynamic optimization problems (DOPs), and the function evaluation management in evolutionary multi-population for DOPs are discussed. Highlighted benefits • Presents the latest advances in learning automata-based optimization approaches. • Addresses the memetic models of learning automata for solving NP-hard problems. • Discusses the application of learning automata for behavior control in evolutionary computation in detail. • Gives the fundamental principles and analyses of the different concepts associated with multi-population methods for dynamic optimization problems.
Publisher: Springer Nature
ISBN: 3030762912
Category : Technology & Engineering
Languages : en
Pages : 340
Book Description
This book is devoted to the leading research in applying learning automaton (LA) and heuristics for solving benchmark and real-world optimization problems. The ever-increasing application of the LA as a promising reinforcement learning technique in artificial intelligence makes it necessary to provide scholars, scientists, and engineers with a practical discussion on LA solutions for optimization. The book starts with a brief introduction to LA models for optimization. Afterward, the research areas related to LA and optimization are addressed as bibliometric network analysis. Then, LA's application in behavior control in evolutionary computation, and memetic models of object migration automata and cellular learning automata for solving NP hard problems are considered. Next, an overview of multi-population methods for DOPs, LA's application in dynamic optimization problems (DOPs), and the function evaluation management in evolutionary multi-population for DOPs are discussed. Highlighted benefits • Presents the latest advances in learning automata-based optimization approaches. • Addresses the memetic models of learning automata for solving NP-hard problems. • Discusses the application of learning automata for behavior control in evolutionary computation in detail. • Gives the fundamental principles and analyses of the different concepts associated with multi-population methods for dynamic optimization problems.
Cellular Automata
Author: Howard Gutowitz
Publisher: MIT Press
ISBN: 9780262570862
Category : Computers
Languages : en
Pages : 510
Book Description
The thirty four contributions in this book cover many aspects of contemporary studies on cellular automata and include reviews, research reports, and guides to recent literature and available software. Cellular automata, dynamic systems in which space and time are discrete, are yielding interesting applications in both the physical and natural sciences. The thirty four contributions in this book cover many aspects of contemporary studies on cellular automata and include reviews, research reports, and guides to recent literature and available software. Chapters cover mathematical analysis, the structure of the space of cellular automata, learning rules with specified properties: cellular automata in biology, physics, chemistry, and computation theory; and generalizations of cellular automata in neural nets, Boolean nets, and coupled map lattices.Current work on cellular automata may be viewed as revolving around two central and closely related problems: the forward problem and the inverse problem. The forward problem concerns the description of properties of given cellular automata. Properties considered include reversibility, invariants, criticality, fractal dimension, and computational power. The role of cellular automata in computation theory is seen as a particularly exciting venue for exploring parallel computers as theoretical and practical tools in mathematical physics. The inverse problem, an area of study gaining prominence particularly in the natural sciences, involves designing rules that possess specified properties or perform specified task. A long-term goal is to develop a set of techniques that can find a rule or set of rules that can reproduce quantitative observations of a physical system. Studies of the inverse problem take up the organization and structure of the set of automata, in particular the parameterization of the space of cellular automata. Optimization and learning techniques, like the genetic algorithm and adaptive stochastic cellular automata are applied to find cellular automaton rules that model such physical phenomena as crystal growth or perform such adaptive-learning tasks as balancing an inverted pole.Howard Gutowitz is Collaborateur in the Service de Physique du Solide et Résonance Magnetique, Commissariat a I'Energie Atomique, Saclay, France.
Publisher: MIT Press
ISBN: 9780262570862
Category : Computers
Languages : en
Pages : 510
Book Description
The thirty four contributions in this book cover many aspects of contemporary studies on cellular automata and include reviews, research reports, and guides to recent literature and available software. Cellular automata, dynamic systems in which space and time are discrete, are yielding interesting applications in both the physical and natural sciences. The thirty four contributions in this book cover many aspects of contemporary studies on cellular automata and include reviews, research reports, and guides to recent literature and available software. Chapters cover mathematical analysis, the structure of the space of cellular automata, learning rules with specified properties: cellular automata in biology, physics, chemistry, and computation theory; and generalizations of cellular automata in neural nets, Boolean nets, and coupled map lattices.Current work on cellular automata may be viewed as revolving around two central and closely related problems: the forward problem and the inverse problem. The forward problem concerns the description of properties of given cellular automata. Properties considered include reversibility, invariants, criticality, fractal dimension, and computational power. The role of cellular automata in computation theory is seen as a particularly exciting venue for exploring parallel computers as theoretical and practical tools in mathematical physics. The inverse problem, an area of study gaining prominence particularly in the natural sciences, involves designing rules that possess specified properties or perform specified task. A long-term goal is to develop a set of techniques that can find a rule or set of rules that can reproduce quantitative observations of a physical system. Studies of the inverse problem take up the organization and structure of the set of automata, in particular the parameterization of the space of cellular automata. Optimization and learning techniques, like the genetic algorithm and adaptive stochastic cellular automata are applied to find cellular automaton rules that model such physical phenomena as crystal growth or perform such adaptive-learning tasks as balancing an inverted pole.Howard Gutowitz is Collaborateur in the Service de Physique du Solide et Résonance Magnetique, Commissariat a I'Energie Atomique, Saclay, France.