Large Eddy Simulations of Turbulent Combustion Including Radiative Heat Transfer PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Large Eddy Simulations of Turbulent Combustion Including Radiative Heat Transfer PDF full book. Access full book title Large Eddy Simulations of Turbulent Combustion Including Radiative Heat Transfer by Rogério Goncalves Dos santos. Download full books in PDF and EPUB format.

Large Eddy Simulations of Turbulent Combustion Including Radiative Heat Transfer

Large Eddy Simulations of Turbulent Combustion Including Radiative Heat Transfer PDF Author: Rogério Goncalves Dos santos
Publisher:
ISBN:
Category :
Languages : en
Pages : 125

Book Description
The combustion is one of the principal ways to produced energy used nowadays, it is also a complex phenomenon, where the turbulent flow, chemical reactions, different phases and different heat transfer phenomena can interact. Better understanding of these interactions is essential to improve the actual combustion system and to developed the new ones. The goal of this thesis is to study the interaction of the turbulent combustion with the thermal radiation by the use of three-dimensional numerical simulation. For that, using a computational tool named CORBA, a code for the combustion Large Eddy Simulation (LES) was coupled with a radiative heat transfer code. This technique allows the exchange of information between the two codes without big changes in their structure, then it is possible to take advantages of the different characteristic time from each phenomenon in a high performance parallel computational environment. In a first time, two-dimensional simulation of a turbulent propane/air premixed flame stabilized downstream a triangular flame holder has been realised. After the changing of the twodimensional radiation code for another three-dimensional one, the same configuration was simulated in 3D. A mesh with more than 4.7 millions cells for the combustion code (AVBP) and more than 3.3 millions cells for the radiation code (DOMASIUM) are used. Results show a changing in the temperature and species fields, as well as in the flame dynamics when the thermal radiation was taken into account, with a minor intensity in the three-dimensional simulations. This method, also, shows that it is possible to perform 3D complex simulations in a industrial acceptable time.

Large Eddy Simulations of Turbulent Combustion Including Radiative Heat Transfer

Large Eddy Simulations of Turbulent Combustion Including Radiative Heat Transfer PDF Author: Rogério Goncalves Dos santos
Publisher:
ISBN:
Category :
Languages : en
Pages : 125

Book Description
The combustion is one of the principal ways to produced energy used nowadays, it is also a complex phenomenon, where the turbulent flow, chemical reactions, different phases and different heat transfer phenomena can interact. Better understanding of these interactions is essential to improve the actual combustion system and to developed the new ones. The goal of this thesis is to study the interaction of the turbulent combustion with the thermal radiation by the use of three-dimensional numerical simulation. For that, using a computational tool named CORBA, a code for the combustion Large Eddy Simulation (LES) was coupled with a radiative heat transfer code. This technique allows the exchange of information between the two codes without big changes in their structure, then it is possible to take advantages of the different characteristic time from each phenomenon in a high performance parallel computational environment. In a first time, two-dimensional simulation of a turbulent propane/air premixed flame stabilized downstream a triangular flame holder has been realised. After the changing of the twodimensional radiation code for another three-dimensional one, the same configuration was simulated in 3D. A mesh with more than 4.7 millions cells for the combustion code (AVBP) and more than 3.3 millions cells for the radiation code (DOMASIUM) are used. Results show a changing in the temperature and species fields, as well as in the flame dynamics when the thermal radiation was taken into account, with a minor intensity in the three-dimensional simulations. This method, also, shows that it is possible to perform 3D complex simulations in a industrial acceptable time.

Radiative Heat Transfer in Turbulent Combustion Systems

Radiative Heat Transfer in Turbulent Combustion Systems PDF Author: Michael F. Modest
Publisher: Springer
ISBN: 3319272918
Category : Science
Languages : en
Pages : 167

Book Description
This introduction reviews why combustion and radiation are important, as well as the technical challenges posed by radiation. Emphasis is on interactions among turbulence, chemistry and radiation (turbulence-chemistry-radiation interactions – TCRI) in Reynolds-averaged and large-eddy simulations. Subsequent chapters cover: chemically reacting turbulent flows; radiation properties, Reynolds transport equation (RTE) solution methods, and TCRI; radiation effects in laminar flames; TCRI in turbulent flames; and high-pressure combustion systems. This Brief presents integrated approach that includes radiation at the outset, rather than as an afterthought. It stands as the most recent developments in physical modeling, numerical algorithms, and applications collected in one monograph.

Large-eddy Simulation of Turbulent Flames with Radiation Heat Transfer

Large-eddy Simulation of Turbulent Flames with Radiation Heat Transfer PDF Author: Ankur Gupta
Publisher:
ISBN:
Category :
Languages : en
Pages : 213

Book Description


Large Eddy Simulation of a Fuel-rich Turbulent Non-premixed Reacting Flow with Radiative Heat Transfer

Large Eddy Simulation of a Fuel-rich Turbulent Non-premixed Reacting Flow with Radiative Heat Transfer PDF Author: Sreebash Chandra Paul
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The aims of this thesis are to apply the Large Eddy Simulation (LES) and beta Probability Density Function ([beta]-PDF) for the simulation of turbulent non-premixed reacting flow, in particularly for the predictions of soot and NO production, and to investigate the radiative heat transfer during combustion process applying Discrete Ordinates Method (DOM). LES seeks the solution by separating the flow field into large-scale eddies, which carry the majority of the energy and are resolved directly, and small-scale eddies, which have been modelled via Smagorinsky model with constant Cs (Smagorinsky model constant) as well as its dynamic calibration. This separation has been made by applying a filtering approach to the governing equations describing the turbulent reacting flow. Firstly, LES technique is applied to investigate the turbulent flow, temperature and species concentrations during the combustion process within an axi-symmetric model cylindrical combustion chamber.

Direct and Large-Eddy Simulation X

Direct and Large-Eddy Simulation X PDF Author: Dimokratis G.E. Grigoriadis
Publisher: Springer
ISBN: 3319632124
Category : Technology & Engineering
Languages : en
Pages : 523

Book Description
This book addresses nearly all aspects of the state of the art in LES & DNS of turbulent flows, ranging from flows in biological systems and the environment to external aerodynamics, domestic and centralized energy production, combustion, propulsion as well as applications of industrial interest. Following the advances in increased computational power and efficiency, several contributions are devoted to LES & DNS of challenging applications, mainly in the area of turbomachinery, including flame modeling, combustion processes and aeroacoustics. The book includes work presented at the tenth Workshop on 'Direct and Large-Eddy Simulation' (DLES-10), which was hosted in Cyprus by the University of Cyprus, from May 27 to 29, 2015. The goal of the workshop was to establish a state of the art in DNS, LES and related techniques for the computation and modeling of turbulent and transitional flows. The book is of interest to scientists and engineers, both in the early stages of their career and at a more senior level.

Large Eddy Simulation of Turbulent Reacting Flows With Radiative Heat Transfer

Large Eddy Simulation of Turbulent Reacting Flows With Radiative Heat Transfer PDF Author: Flavia Cavalcanti Miranda
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Direct and Large-Eddy Simulation XI

Direct and Large-Eddy Simulation XI PDF Author: Maria Vittoria Salvetti
Publisher: Springer
ISBN: 3030049159
Category : Technology & Engineering
Languages : en
Pages : 608

Book Description
This book gathers the proceedings of the 11th workshop on Direct and Large Eddy Simulation (DLES), which was held in Pisa, Italy in May 2017. The event focused on modern techniques for simulating turbulent flows based on the partial or full resolution of the instantaneous turbulent flow structures, as Direct Numerical Simulation (DNS), Large-Eddy Simulation (LES) or hybrid models based on a combination of LES and RANS approaches. In light of the growing capacities of modern computers, these approaches have been gaining more and more interest over the years and will undoubtedly be developed and applied further. The workshop offered a unique opportunity to establish a state-of-the-art of DNS, LES and related techniques for the computation and modeling of turbulent and transitional flows and to discuss about recent advances and applications. This volume contains most of the contributed papers, which were submitted and further reviewed for publication. They cover advances in computational techniques, SGS modeling, boundary conditions, post-processing and data analysis, and applications in several fields, namely multiphase and reactive flows, convection and heat transfer, compressible flows, aerodynamics of airfoils and wings, bluff-body and separated flows, internal flows and wall turbulence and other complex flows.

Radiative Heat Transfer

Radiative Heat Transfer PDF Author: Michael F. Modest
Publisher: Academic Press
ISBN: 032398407X
Category : Science
Languages : en
Pages : 1018

Book Description
Radiative Heat Transfer, Fourth Edition is a fully updated, revised and practical reference on the basic physics and computational tools scientists and researchers use to solve problems in the broad field of radiative heat transfer. This book is acknowledged as the core reference in the field, providing models, methodologies and calculations essential to solving research problems. It is applicable to a variety of industries, including nuclear, solar and combustion energy, aerospace, chemical and materials processing, as well as environmental, biomedical and nanotechnology fields. Contemporary examples and problems surrounding sustainable energy, materials and process engineering are an essential addition to this edition. Includes end-of-chapter problems and a solutions manual, providing a structured and coherent reference Presents many worked examples which have been brought fully up-to-date to reflect the latest research Details many computer codes, ranging from basic problem solving aids to sophisticated research tools

Turbulent Combustion Modeling

Turbulent Combustion Modeling PDF Author: Tarek Echekki
Publisher: Springer Science & Business Media
ISBN: 9400704127
Category : Technology & Engineering
Languages : en
Pages : 496

Book Description
Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.

Direct and Large Eddy Simulation XIII

Direct and Large Eddy Simulation XIII PDF Author: Cristian Marchioli
Publisher: Springer Nature
ISBN: 3031470281
Category : Technology & Engineering
Languages : en
Pages : 389

Book Description
This book covers the diverse and cutting-edge research presented at the 13th ERCOFTAC Workshop on Direct and Large Eddy Simulation. The first section of the book focuses on Aerodynamics/Aeroacoustics, comprising eight papers that delve into the intricate relationship between fluid flow and aerodynamic performance. The second section explores the dynamics of Bluff/Moving Bodies through four insightful papers. Bubbly Flows, the subject of the third section, is examined through four papers. Moving on, the fourth section is dedicated to Combustion and Reactive Flows, presenting two papers that focus on the complex dynamics of combustion processes and the interactions between fluids and reactive species. Convection and Heat/Mass Transfer are the central themes of the fifth section, which includes three papers. These contributions explore the fundamental aspects of heat and mass transfer in fluid flows, addressing topics such as convective heat transfer, natural convection, and mass transport phenomena. The sixth section covers Data Assimilation and Uncertainty Quantification, featuring two papers that highlight the importance of incorporating data into fluid dynamic models and quantifying uncertainties associated with these models. The subsequent sections encompass a wide range of topics, including Environmental and Industrial Applications, Flow Separation, LES Fundamentals and Modelling, Multiphase Flows, and Numerics and Methodology. These sections collectively present a total of 23 papers that explore different facets of fluid dynamics, contributing to the advancement of the field and its practical applications.