Author:
Publisher:
ISBN:
Category : Fluids
Languages : en
Pages : 364
Book Description
JSME International Journal
The Shock and Vibration Digest
NIST Serial Holdings
Author: National Institute of Standards and Technology (U.S.)
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 268
Book Description
Publisher:
ISBN:
Category : Engineering
Languages : en
Pages : 268
Book Description
IUTAM Symposium on Creep in Structures
Author: S. Murakami
Publisher: Springer Science & Business Media
ISBN: 940159628X
Category : Science
Languages : en
Pages : 541
Book Description
These proceedings contain 48 innovative papers consolidating the development of creep research since 1990 and discussing the new horizons in this fundamental field of applied mechanics in the coming century. This volume is useful for researchers and graduate course students in the relevant fields.
Publisher: Springer Science & Business Media
ISBN: 940159628X
Category : Science
Languages : en
Pages : 541
Book Description
These proceedings contain 48 innovative papers consolidating the development of creep research since 1990 and discussing the new horizons in this fundamental field of applied mechanics in the coming century. This volume is useful for researchers and graduate course students in the relevant fields.
Applied mechanics reviews
Advanced Applications of Supercritical Fluids in Energy Systems
Author: Chen, Lin
Publisher: IGI Global
ISBN: 1522520481
Category : Science
Languages : en
Pages : 712
Book Description
Supercritical fluids have been utilized for numerous scientific advancements and industrial innovations. As the concern for environmental sustainability grows, these fluids have been increasingly used for energy efficiency purposes. Advanced Applications of Supercritical Fluids in Energy Systems is a pivotal reference source for the latest academic material on the integration of supercritical fluids into contemporary energy-related applications. Highlighting innovative discussions on topics such as renewable energy, fluid dynamics, and heat and mass transfer, this book is ideally designed for researchers, academics, professionals, graduate students, and practitioners interested in the latest trends in energy conversion.
Publisher: IGI Global
ISBN: 1522520481
Category : Science
Languages : en
Pages : 712
Book Description
Supercritical fluids have been utilized for numerous scientific advancements and industrial innovations. As the concern for environmental sustainability grows, these fluids have been increasingly used for energy efficiency purposes. Advanced Applications of Supercritical Fluids in Energy Systems is a pivotal reference source for the latest academic material on the integration of supercritical fluids into contemporary energy-related applications. Highlighting innovative discussions on topics such as renewable energy, fluid dynamics, and heat and mass transfer, this book is ideally designed for researchers, academics, professionals, graduate students, and practitioners interested in the latest trends in energy conversion.
Simulation and Modeling Related to Computational Science and Robotics Technology
Author: F. Kojima
Publisher: IOS Press
ISBN: 1614990921
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
Simulation and modeling contribute to a broad range of applications in computational science and robotics technology, often addressing important design and control problems.This book presents a selection of papers from the International Workshop on Simulation and Modeling related to Computational Science and Robotics Technology (SiMCTR 2011), held at Kobe University, Japan, in November 2011.The workshop provided a forum for discussing recent developments in the growing field of engineering science and mathematical sciences, and brought together a diverse group of researchers in these areas to share and compare the different approaches to simulation and modeling in computational science and robotics technology. The workshop was also aimed at establishing collaborative links between engineering researchers of information and robotics technology (IRT) and applied mathematicians working in modeling and computational methods for design and control.
Publisher: IOS Press
ISBN: 1614990921
Category : Technology & Engineering
Languages : en
Pages : 264
Book Description
Simulation and modeling contribute to a broad range of applications in computational science and robotics technology, often addressing important design and control problems.This book presents a selection of papers from the International Workshop on Simulation and Modeling related to Computational Science and Robotics Technology (SiMCTR 2011), held at Kobe University, Japan, in November 2011.The workshop provided a forum for discussing recent developments in the growing field of engineering science and mathematical sciences, and brought together a diverse group of researchers in these areas to share and compare the different approaches to simulation and modeling in computational science and robotics technology. The workshop was also aimed at establishing collaborative links between engineering researchers of information and robotics technology (IRT) and applied mathematicians working in modeling and computational methods for design and control.
The GETMe Mesh Smoothing Framework
Author: Dimitris P. Vartziotis
Publisher: CRC Press
ISBN: 0429680090
Category : Computers
Languages : en
Pages : 377
Book Description
High quality meshes play a key role in many applications based on digital modeling and simulation. The finite element method is a paragon for such an approach and it is well known that quality meshes can significantly improve computational efficiency and solution accuracy of this method. Therefore, a lot of effort has been put in methods for improving mesh quality. These range from simple geometric approaches, like Laplacian smoothing, with a high computational efficiency but possible low resulting mesh quality, to global optimization-based methods, resulting in an excellent mesh quality at the cost of an increased computational and implementational complexity. The geometric element transformation method (GETMe) aims to fill the gap between these two approaches. It is based on geometric mesh element transformations, which iteratively transform polygonal and polyhedral elements into their regular counterparts or into elements with a prescribed shape. GETMe combines a Laplacian smoothing-like computational efficiency with a global optimization-like effectiveness. The method is straightforward to implement and its variants can also be used to improve tangled and anisotropic meshes. This book describes the mathematical theory of geometric element transformations as foundation for mesh smoothing. It gives a thorough introduction to GETMe-based mesh smoothing and its algorithms providing a framework to focus on effectively improving key mesh quality aspects. It addresses the improvement of planar, surface, volumetric, mixed, isotropic, and anisotropic meshes and addresses aspects of combining mesh smoothing with topological mesh modification. The advantages of GETMe-based mesh smoothing are demonstrated by the example of various numerical tests. These include smoothing of real world meshes from engineering applications as well as smoothing of synthetic meshes for demonstrating key aspects of GETMe-based mesh improvement. Results are compared with those of other smoothing methods in terms of runtime behavior, mesh quality, and resulting finite element solution efficiency and accuracy. Features: • Helps to improve finite element mesh quality by applying geometry-driven mesh smoothing approaches. • Supports the reader in understanding and implementing GETMe-based mesh smoothing. • Discusses aspects and properties of GETMe smoothing variants and thus provides guidance for choosing the appropriate mesh improvement algorithm. • Addresses smoothing of various mesh types: planar, surface, volumetric, isotropic, anisotropic, non-mixed, and mixed. • Provides and analyzes geometric element transformations for polygonal and polyhedral elements with regular and non-regular limits. • Includes a broad range of numerical examples and compares results with those of other smoothing methods.
Publisher: CRC Press
ISBN: 0429680090
Category : Computers
Languages : en
Pages : 377
Book Description
High quality meshes play a key role in many applications based on digital modeling and simulation. The finite element method is a paragon for such an approach and it is well known that quality meshes can significantly improve computational efficiency and solution accuracy of this method. Therefore, a lot of effort has been put in methods for improving mesh quality. These range from simple geometric approaches, like Laplacian smoothing, with a high computational efficiency but possible low resulting mesh quality, to global optimization-based methods, resulting in an excellent mesh quality at the cost of an increased computational and implementational complexity. The geometric element transformation method (GETMe) aims to fill the gap between these two approaches. It is based on geometric mesh element transformations, which iteratively transform polygonal and polyhedral elements into their regular counterparts or into elements with a prescribed shape. GETMe combines a Laplacian smoothing-like computational efficiency with a global optimization-like effectiveness. The method is straightforward to implement and its variants can also be used to improve tangled and anisotropic meshes. This book describes the mathematical theory of geometric element transformations as foundation for mesh smoothing. It gives a thorough introduction to GETMe-based mesh smoothing and its algorithms providing a framework to focus on effectively improving key mesh quality aspects. It addresses the improvement of planar, surface, volumetric, mixed, isotropic, and anisotropic meshes and addresses aspects of combining mesh smoothing with topological mesh modification. The advantages of GETMe-based mesh smoothing are demonstrated by the example of various numerical tests. These include smoothing of real world meshes from engineering applications as well as smoothing of synthetic meshes for demonstrating key aspects of GETMe-based mesh improvement. Results are compared with those of other smoothing methods in terms of runtime behavior, mesh quality, and resulting finite element solution efficiency and accuracy. Features: • Helps to improve finite element mesh quality by applying geometry-driven mesh smoothing approaches. • Supports the reader in understanding and implementing GETMe-based mesh smoothing. • Discusses aspects and properties of GETMe smoothing variants and thus provides guidance for choosing the appropriate mesh improvement algorithm. • Addresses smoothing of various mesh types: planar, surface, volumetric, isotropic, anisotropic, non-mixed, and mixed. • Provides and analyzes geometric element transformations for polygonal and polyhedral elements with regular and non-regular limits. • Includes a broad range of numerical examples and compares results with those of other smoothing methods.
Applied Fracture Mechanics
Author: Alexander Belov
Publisher: BoD – Books on Demand
ISBN: 9535108972
Category : Technology & Engineering
Languages : en
Pages : 396
Book Description
The book "Applied Fracture Mechanics" presents a collection of articles on application of fracture mechanics methods to materials science, medicine, and engineering. In thirteen chapters, a wide range of topics is discussed, including strength of biological tissues, safety of nuclear reactor components, fatigue effects in pipelines, environmental effects on fracture among others. In addition, the book presents mathematical and computational methods underlying the fracture mechanics applications, and also developments in statistical modeling of fatigue. The work presented in this book will be useful, effective, and beneficial to mechanical engineers, civil engineers, and material scientists from industry, research, and education.
Publisher: BoD – Books on Demand
ISBN: 9535108972
Category : Technology & Engineering
Languages : en
Pages : 396
Book Description
The book "Applied Fracture Mechanics" presents a collection of articles on application of fracture mechanics methods to materials science, medicine, and engineering. In thirteen chapters, a wide range of topics is discussed, including strength of biological tissues, safety of nuclear reactor components, fatigue effects in pipelines, environmental effects on fracture among others. In addition, the book presents mathematical and computational methods underlying the fracture mechanics applications, and also developments in statistical modeling of fatigue. The work presented in this book will be useful, effective, and beneficial to mechanical engineers, civil engineers, and material scientists from industry, research, and education.
Recent Advances in Structural Engineering
Author:
Publisher: Universities Press
ISBN: 9788173714931
Category : Structural engineering
Languages : en
Pages : 412
Book Description
This book contains state-of-the-art review articles on specific research areas in the civil engineering discipline-the areas include geotechnical engineering, hydraulics and water resources engineering, and structural engineering. The articles are written by invited authors who are currently active at the international level in their respective research fields.
Publisher: Universities Press
ISBN: 9788173714931
Category : Structural engineering
Languages : en
Pages : 412
Book Description
This book contains state-of-the-art review articles on specific research areas in the civil engineering discipline-the areas include geotechnical engineering, hydraulics and water resources engineering, and structural engineering. The articles are written by invited authors who are currently active at the international level in their respective research fields.