Author: Vladimir G. Plekhanov
Publisher: Springer Science & Business Media
ISBN: 3642286135
Category : Science
Languages : en
Pages : 104
Book Description
This Briefs volume describes the properties and structure of elementary excitations in isotope low-dimensional structures. Without assuming prior knowledge of quantum physics, the present book provides the basic knowledge needed to understand the recent developments in the sub-disciplines of nanoscience isotopetronics, novel device concepts and materials for nanotechnology. It is the first and comprehensive interdisciplinary account of the newly developed scientific discipline isotopetronics.
Isotope Low-Dimensional Structures
Author: Vladimir G. Plekhanov
Publisher: Springer Science & Business Media
ISBN: 3642286135
Category : Science
Languages : en
Pages : 104
Book Description
This Briefs volume describes the properties and structure of elementary excitations in isotope low-dimensional structures. Without assuming prior knowledge of quantum physics, the present book provides the basic knowledge needed to understand the recent developments in the sub-disciplines of nanoscience isotopetronics, novel device concepts and materials for nanotechnology. It is the first and comprehensive interdisciplinary account of the newly developed scientific discipline isotopetronics.
Publisher: Springer Science & Business Media
ISBN: 3642286135
Category : Science
Languages : en
Pages : 104
Book Description
This Briefs volume describes the properties and structure of elementary excitations in isotope low-dimensional structures. Without assuming prior knowledge of quantum physics, the present book provides the basic knowledge needed to understand the recent developments in the sub-disciplines of nanoscience isotopetronics, novel device concepts and materials for nanotechnology. It is the first and comprehensive interdisciplinary account of the newly developed scientific discipline isotopetronics.
Low-Dimensional Structures in Semiconductors
Author: A.R. Peaker
Publisher: Springer Science & Business Media
ISBN: 1489906231
Category : Science
Languages : en
Pages : 227
Book Description
This volume contains a sequence of reviews presented at the NATO Advanced Study Institute on 'Low Dimensional Structures in Semiconductors ... from Basic Physics to Applications.' This was part of the International School of Materials Science and 1990 at the Ettore Majorana Centre in Sicily. Technology held in July Only a few years ago, Low Dimensional Structures was an esoteric concept, but now it is apparent they are likely to playa major role in the next generation of electronic devices. The theme of the School acknowledged this rapidly developing maturity.' The contributions to the volume consider not only the essential physics, but take a wider view of the topic, starting from material growth and processing, then prog ressing right through to applications with some discussion of the likely use of low dimensional devices in systems. The papers are arranged into four sections, the first of which deals with basic con cepts of semiconductor and low dimensional systems. The second section is on growth and fabrication, reviewing MBE and MOVPE methods and discussing the achievements and limitations of techniques to reduce structures into the realms of one and zero dimensions. The third section covers the crucial issue of interfaces while the final section deals with devices and device physics.
Publisher: Springer Science & Business Media
ISBN: 1489906231
Category : Science
Languages : en
Pages : 227
Book Description
This volume contains a sequence of reviews presented at the NATO Advanced Study Institute on 'Low Dimensional Structures in Semiconductors ... from Basic Physics to Applications.' This was part of the International School of Materials Science and 1990 at the Ettore Majorana Centre in Sicily. Technology held in July Only a few years ago, Low Dimensional Structures was an esoteric concept, but now it is apparent they are likely to playa major role in the next generation of electronic devices. The theme of the School acknowledged this rapidly developing maturity.' The contributions to the volume consider not only the essential physics, but take a wider view of the topic, starting from material growth and processing, then prog ressing right through to applications with some discussion of the likely use of low dimensional devices in systems. The papers are arranged into four sections, the first of which deals with basic con cepts of semiconductor and low dimensional systems. The second section is on growth and fabrication, reviewing MBE and MOVPE methods and discussing the achievements and limitations of techniques to reduce structures into the realms of one and zero dimensions. The third section covers the crucial issue of interfaces while the final section deals with devices and device physics.
Introduction to Isotopic Materials Science
Author: Vladimir G. Plekhanov
Publisher: Springer
ISBN: 3319422618
Category : Technology & Engineering
Languages : en
Pages : 298
Book Description
This book describes new trends in the nanoscience of isotopic materials science. Assuming a background in graduate condensed matter physics and covering the fundamental aspects of isotopic materials science from the very beginning, it equips readers to engage in high-level professional research in this area. The book ́s main objective is to provide insight into the question of why solids are the way they are, either because of how their atoms are bonded with one another, because of defects in their structure, or because of how they are produced or processed. Accordingly, it explores the science of how atoms interact, connects the results to real materials properties, and demonstrates the engineering concepts that can be used to produce or improve semiconductors by design. In addition, it shows how the concepts discussed are applied in the laboratory. The book addresses the needs of researchers, graduate students and senior undergraduate students alike. Although primarily written for materials science audience, it will be equally useful to those teaching in electrical engineering, materials science or even chemical engineering or physics curricula. In order to maintain the focus on materials concepts, however, the book does not burden the reader with details of many of the derivations and equations nor does it delve into the details of electrical engineering topics.
Publisher: Springer
ISBN: 3319422618
Category : Technology & Engineering
Languages : en
Pages : 298
Book Description
This book describes new trends in the nanoscience of isotopic materials science. Assuming a background in graduate condensed matter physics and covering the fundamental aspects of isotopic materials science from the very beginning, it equips readers to engage in high-level professional research in this area. The book ́s main objective is to provide insight into the question of why solids are the way they are, either because of how their atoms are bonded with one another, because of defects in their structure, or because of how they are produced or processed. Accordingly, it explores the science of how atoms interact, connects the results to real materials properties, and demonstrates the engineering concepts that can be used to produce or improve semiconductors by design. In addition, it shows how the concepts discussed are applied in the laboratory. The book addresses the needs of researchers, graduate students and senior undergraduate students alike. Although primarily written for materials science audience, it will be equally useful to those teaching in electrical engineering, materials science or even chemical engineering or physics curricula. In order to maintain the focus on materials concepts, however, the book does not burden the reader with details of many of the derivations and equations nor does it delve into the details of electrical engineering topics.
Isotopes in Condensed Matter
Author: Vladimir G. Plekhanov
Publisher: Springer Science & Business Media
ISBN: 3642287239
Category : Technology & Engineering
Languages : en
Pages : 299
Book Description
This book provides a concise introduction to the newly created sub-discipline of solid state physics isotopetronics. The role of isotopes in materials and their properties are describe in this book. The problem of the enigma of the atomic mass in microphysics is briefly discussed. The range of the applications of isotopes is wide: from biochemical process in living organisms to modern technical applications in quantum information. Isotopetronics promises to improve nanoelectronic and optoelectronic devices. With numerous illustrations this book is useful to researchers, engineers and graduate students.
Publisher: Springer Science & Business Media
ISBN: 3642287239
Category : Technology & Engineering
Languages : en
Pages : 299
Book Description
This book provides a concise introduction to the newly created sub-discipline of solid state physics isotopetronics. The role of isotopes in materials and their properties are describe in this book. The problem of the enigma of the atomic mass in microphysics is briefly discussed. The range of the applications of isotopes is wide: from biochemical process in living organisms to modern technical applications in quantum information. Isotopetronics promises to improve nanoelectronic and optoelectronic devices. With numerous illustrations this book is useful to researchers, engineers and graduate students.
Isotope Effects in Solid State Physics
Author:
Publisher: Academic Press
ISBN: 0080540961
Category : Science
Languages : en
Pages : 287
Book Description
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The Willardson and Beer series, as it is widely known, has succeeded in producing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded. Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry. - First book on the extremely fashionable subject - Adopts an original approach to the subject - Timely book in a field making significant progress - Introduces new optical tools for solid state physics with wide technological potential - Important applications are to be expected for information storage, isotopic fiber-optics, and tunable solid state lasers, isotopic optoelectronics, as well as neutron transmutation doping - Accessible to physics, chemists, electronic engineers, and materials scientists - Contents based on recent theoretical developments
Publisher: Academic Press
ISBN: 0080540961
Category : Science
Languages : en
Pages : 287
Book Description
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The Willardson and Beer series, as it is widely known, has succeeded in producing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded. Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry. - First book on the extremely fashionable subject - Adopts an original approach to the subject - Timely book in a field making significant progress - Introduces new optical tools for solid state physics with wide technological potential - Important applications are to be expected for information storage, isotopic fiber-optics, and tunable solid state lasers, isotopic optoelectronics, as well as neutron transmutation doping - Accessible to physics, chemists, electronic engineers, and materials scientists - Contents based on recent theoretical developments
Isotope-Based Quantum Information
Author: Vladimir G. Plekhanov
Publisher: Springer Science & Business Media
ISBN: 3642287506
Category : Computers
Languages : en
Pages : 133
Book Description
The present book provides to the main ideas and techniques of the rapid progressing field of quantum information and quantum computation using isotope - mixed materials. It starts with an introduction to the isotope physics and then describes of the isotope - based quantum information and quantum computation. The ability to manipulate and control electron and/or nucleus spin in semiconductor devices provides a new route to expand the capabilities of inorganic semiconductor-based electronics and to design innovative devices with potential application in quantum computing. One of the major challenges towards these objectives is to develop semiconductor-based systems and architectures in which the spatial distribution of spins and their properties can be controlled. For instance, to eliminate electron spin decoherence resulting from hyperfine interaction due to nuclear spin background, isotopically controlled devices are needed (i.e., nuclear spin-depleted). In other emerging concepts, the control of the spatial distribution of isotopes with nuclear spins is a prerequisite to implement the quantum bits (or qbits). Therefore, stable semiconductor isotopes are important elements in the development of solid-state quantum information. There are not only different algorithms of quantum computation discussed but also the different models of quantum computers are presented. With numerous illustrations this small book is of great interest for undergraduate students taking courses in mesoscopic physics or nanoelectronics as well as quantum information, and academic and industrial researches working in this field.
Publisher: Springer Science & Business Media
ISBN: 3642287506
Category : Computers
Languages : en
Pages : 133
Book Description
The present book provides to the main ideas and techniques of the rapid progressing field of quantum information and quantum computation using isotope - mixed materials. It starts with an introduction to the isotope physics and then describes of the isotope - based quantum information and quantum computation. The ability to manipulate and control electron and/or nucleus spin in semiconductor devices provides a new route to expand the capabilities of inorganic semiconductor-based electronics and to design innovative devices with potential application in quantum computing. One of the major challenges towards these objectives is to develop semiconductor-based systems and architectures in which the spatial distribution of spins and their properties can be controlled. For instance, to eliminate electron spin decoherence resulting from hyperfine interaction due to nuclear spin background, isotopically controlled devices are needed (i.e., nuclear spin-depleted). In other emerging concepts, the control of the spatial distribution of isotopes with nuclear spins is a prerequisite to implement the quantum bits (or qbits). Therefore, stable semiconductor isotopes are important elements in the development of solid-state quantum information. There are not only different algorithms of quantum computation discussed but also the different models of quantum computers are presented. With numerous illustrations this small book is of great interest for undergraduate students taking courses in mesoscopic physics or nanoelectronics as well as quantum information, and academic and industrial researches working in this field.
Low-dimensional Semiconductors
Author: M. J. Kelly
Publisher: Clarendon Press
ISBN: 0191590096
Category : Science
Languages : en
Pages : 569
Book Description
This text is a first attempt to pull together the whole of semiconductor science and technology since 1970 in so far as semiconductor multilayers are concerned. Material, technology, physics and device issues are described with approximately equal emphasis, and form a single coherant point of view. The subject matter is the concern of over half of today's active semiconductor scientists and technologists, the remainder working on bulk semiconductors and devices. It is now routine to design and the prepare semiconductor multilayers at a time, with independent control over the dropping and composition in each layer. In turn these multilayers can be patterned with features that as a small as a few atomic layers in lateral extent. The resulting structures open up many new ares of exciting solid state and quantum physics. They have also led to whole new generations of electronic and optoelectronic devices whose superior performance relates back to the multilayer structures. The principles established in the field have several decades to go, advancing towards the ultimate of materials engineering, the design and preparation of solids atom by atom. The book should appeal equally to physicists, electronic engineers and materials scientists.
Publisher: Clarendon Press
ISBN: 0191590096
Category : Science
Languages : en
Pages : 569
Book Description
This text is a first attempt to pull together the whole of semiconductor science and technology since 1970 in so far as semiconductor multilayers are concerned. Material, technology, physics and device issues are described with approximately equal emphasis, and form a single coherant point of view. The subject matter is the concern of over half of today's active semiconductor scientists and technologists, the remainder working on bulk semiconductors and devices. It is now routine to design and the prepare semiconductor multilayers at a time, with independent control over the dropping and composition in each layer. In turn these multilayers can be patterned with features that as a small as a few atomic layers in lateral extent. The resulting structures open up many new ares of exciting solid state and quantum physics. They have also led to whole new generations of electronic and optoelectronic devices whose superior performance relates back to the multilayer structures. The principles established in the field have several decades to go, advancing towards the ultimate of materials engineering, the design and preparation of solids atom by atom. The book should appeal equally to physicists, electronic engineers and materials scientists.
Models and Methods of High-Tc Superconductivity
Author: J. K. Srivastava
Publisher: Nova Publishers
ISBN: 9781590336670
Category : Science
Languages : en
Pages : 438
Book Description
The articles in this exceptional book contain regular papers, extended papers and reviews, and thus vary in length and are useful for all kinds of audience. They describe, as the book's name suggests, HTSC models and methodologies. Physical models (like extended BCS model, bipolaron model, spin bag model, RVB (resonating valence bond) model, preformed Cooper pairs and antiferromagnetic spin fluctuation (AFSF) based models, stripe phase, paired cluster (spin glass (SG) frustration based) model, Kamimura-Suwa (Hund's coupling mechanism based) model, electron- plasmon interaction, electron- phonon interaction, etc.), theoretical methods (methodologies) (like generalised BCS-Migdal-Eliashberg theory, Hubbard model, t-J model, t-t'-U model, Hubbard-Holstein model, Fermi-, non Fermi- and marginal Fermi- liquid concepts, generalised Hartree-Fock formalism, etc.) and, experimental status and methodologies are all described there. For comparison with cuprates, fullerenes, ruthenates, organic-, non Cu-containing oxide-and conventional (elemental, A15)- superconductors, molecular crystals, nickelates, manganites, borides etc. are also discussed.
Publisher: Nova Publishers
ISBN: 9781590336670
Category : Science
Languages : en
Pages : 438
Book Description
The articles in this exceptional book contain regular papers, extended papers and reviews, and thus vary in length and are useful for all kinds of audience. They describe, as the book's name suggests, HTSC models and methodologies. Physical models (like extended BCS model, bipolaron model, spin bag model, RVB (resonating valence bond) model, preformed Cooper pairs and antiferromagnetic spin fluctuation (AFSF) based models, stripe phase, paired cluster (spin glass (SG) frustration based) model, Kamimura-Suwa (Hund's coupling mechanism based) model, electron- plasmon interaction, electron- phonon interaction, etc.), theoretical methods (methodologies) (like generalised BCS-Migdal-Eliashberg theory, Hubbard model, t-J model, t-t'-U model, Hubbard-Holstein model, Fermi-, non Fermi- and marginal Fermi- liquid concepts, generalised Hartree-Fock formalism, etc.) and, experimental status and methodologies are all described there. For comparison with cuprates, fullerenes, ruthenates, organic-, non Cu-containing oxide-and conventional (elemental, A15)- superconductors, molecular crystals, nickelates, manganites, borides etc. are also discussed.
Scientific and Technical Aerospace Reports
NMR in Glycoscience and Glycotechnology
Author: Koichi Kato
Publisher: Royal Society of Chemistry
ISBN: 1782623949
Category : Science
Languages : en
Pages : 417
Book Description
This volume focuses on solution and solid-state NMR of carbohydrates, glycoproteins, glyco-technologies, biomass and related topics. It is estimated that at least 80% of all proteins are glycoproteins. Because of the complexity, heterogeneity and flexibility of the sugar chains, the structural biology approaches for glycoconjugates have been generally avoided. NMR techniques although well established for structural analyses of proteins and nucleic acids, cannot be simply applied to this complex class of biomolecules. Nonetheless, recently developed NMR techniques for carbohydrates open the door to conformational studies of a variety of sugar chains of biological interest. NMR studies on glycans will have significant impact on the development of vaccines, adjuvants, therapeutics, biomarkers and on biomass regeneration. In this volume, the Editors have collected the most up-to-date NMR applications from experts in the field of carbohydrate NMR spectroscopy. Timely and useful, not only for NMR specialists, it will appeal to researchers in the general field of structural biology, biochemistry and biophysics, molecular and cellular biology and material science.
Publisher: Royal Society of Chemistry
ISBN: 1782623949
Category : Science
Languages : en
Pages : 417
Book Description
This volume focuses on solution and solid-state NMR of carbohydrates, glycoproteins, glyco-technologies, biomass and related topics. It is estimated that at least 80% of all proteins are glycoproteins. Because of the complexity, heterogeneity and flexibility of the sugar chains, the structural biology approaches for glycoconjugates have been generally avoided. NMR techniques although well established for structural analyses of proteins and nucleic acids, cannot be simply applied to this complex class of biomolecules. Nonetheless, recently developed NMR techniques for carbohydrates open the door to conformational studies of a variety of sugar chains of biological interest. NMR studies on glycans will have significant impact on the development of vaccines, adjuvants, therapeutics, biomarkers and on biomass regeneration. In this volume, the Editors have collected the most up-to-date NMR applications from experts in the field of carbohydrate NMR spectroscopy. Timely and useful, not only for NMR specialists, it will appeal to researchers in the general field of structural biology, biochemistry and biophysics, molecular and cellular biology and material science.